Sub-toxic events induced by truck speed-facilitated PM 2.5 and its counteraction by epigallocatechin-3-gallate in A549 human lung cells
To distinguish the influences of fuel type and truck speed on chemical composition and sub-toxic effects of particulates (PM ) from engine emissions, biomarkers-interleukin-6 (IL-6), cytochrome P450 (CYP) 1A1, heme oxygenase (HO)-1, and NADPH-quinone oxidoreductase (NQO)-1-were studied in A549 human...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-09, Vol.12 (1), p.15004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To distinguish the influences of fuel type and truck speed on chemical composition and sub-toxic effects of particulates (PM
) from engine emissions, biomarkers-interleukin-6 (IL-6), cytochrome P450 (CYP) 1A1, heme oxygenase (HO)-1, and NADPH-quinone oxidoreductase (NQO)-1-were studied in A549 human lung cells. Fuel type and truck speed preferentially affected the quantity and ion/polycyclic aromatic hydrocarbon (PAH) composition of PM
, respectively. Under idling operation, phenanthrene was the most abundant PAH. At high speed, more than 50% of the PAHs had high molecular weight (HMW), of which benzo[a]pyrene (B[a]P), benzo[ghi]perylene (B[ghi]P), and indeno[1,2,3-cd]pyrene (I[cd]P) were the main PAHs. B[a]P, B[ghi]P, and I[cd]P caused potent induction of IL-6, CYP1A1, and NQO-1, whereas phenanthrene mildly induced CYP1A1. Based on the PAH-mediated induction, the predicted increases in biomarkers were positively correlated with the measured increases. HMW-PAHs contribute to the biomarker induction by PM
, at high speed, which was reduced by co-exposure to epigallocatechin-3-gallate. |
---|---|
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-022-18918-x |