MicroRNA-155-5p Aggravates Adriamycin-Induced Focal Segmental Glomerulosclerosis through Targeting Nrf2

Introduction: Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix and usually associated with nephrotic range proteinuria. FSGS is a huge burden to society; however, the mechanisms remain unclear and treat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephron (2015) 2023-03, Vol.147 (2), p.108-119
Hauptverfasser: Liu, Guoyong, He, Liyu, Yang, Xiaomeng, Tang, Lingling, Shi, Wei, She, Jian, Wei, Jiali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction: Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix and usually associated with nephrotic range proteinuria. FSGS is a huge burden to society; however, the mechanisms remain unclear and treatment is still lacking. Methods: Adriamycin nephropathy was induced by Adriamycin injection and some mice were also injected with Anti-miR-155-5p LNA or YC-1 (a pharmacological inhibitor of HIF-1). At 6 weeks, the mice were sacrificed, and kidneys, blood and urine samples were collected for further analysis. Results: We demonstrated a significant increase of miR-155-5p in kidney tissues in Adriamycin-induced FSGS mouse models. We also found Adriamycin treatment led to the activation of HIF-1, and inhibition of HIF-1 using YC-1 partly prevented the induction of miR-155-5p. Functionally, anti-miR-155-5p attenuated kidney injury and delayed the progression of renal fibrosis. Further, anti-miR-155-5p also enhanced the expression of Nrf2 following Adriamycin treatment. Further, our luciferase microRNA target reporter assay verified Nrf2 as a direct target of miR-155-5p. Our further results indicated anti-miR-155-5p could suppress kidney oxidative stress and inflammation, also supporting Nrf2 was the direct target of miR-155-5p. Finally, we also found miR-155-5p did not increase in serum but significantly increased in urine, indicating urinary miR-155-5p may be useful for FSGS diagnosis. Conclusion: This study identified a HIF-1/miR-155-5p/Nrf2 axis which can promote kidney oxidative stress and inflammation, finally aggravating kidney injury and accelerating the progression of renal fibrosis in FSGS. Moreover, the increase in urinary miR-155-5p may be useful for the diagnosis of FSGS.
ISSN:1660-8151
2235-3186
DOI:10.1159/000525233