RF-Next: Efficient Receptive Field Search for Convolutional Neural Networks

Temporal/spatial receptive fields of models play an important role in sequential/spatial tasks. Large receptive fields facilitate long-term relations, while small receptive fields help to capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-03, Vol.45 (3), p.2984-3002
Hauptverfasser: Gao, Shanghua, Li, Zhong-Yu, Han, Qi, Cheng, Ming-Ming, Wang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temporal/spatial receptive fields of models play an important role in sequential/spatial tasks. Large receptive fields facilitate long-term relations, while small receptive fields help to capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combinations further. The global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an expectation-guided iterative local search scheme to refine combinations effectively. Our RF-Next models, plugging receptive field search to various models, boost the performance on many tasks, e.g., temporal action segmentation, object detection, instance segmentation, and speech synthesis. The source code is publicly available on http://mmcheng.net/rfnext .
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3183829