Dual loss of regulator of G protein signaling 2 and 5 exacerbates ventricular myocyte arrhythmias and disrupts the fine-tuning of G i/o signaling

Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2022-09, Vol.170, p.34
Hauptverfasser: Dahlen, Shelby A, Bernadyn, Tyler F, Dixon, Alethia J, Sun, Bo, Xia, Jingsheng, Owens, Elizabeth A, Osei-Owusu, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiac contractility, essential to maintaining proper cardiac output and circulation, is regulated by G protein-coupled receptor (GPCR) signaling. Previously, the absence of regulator of G protein signaling (RGS) 2 and 5, separately, was shown to cause G protein dysregulation, contributing to modest blood pressure elevation and exaggerated cardiac hypertrophic response to pressure-overload. Whether RGS2 and 5 redundantly control G protein signaling to maintain cardiovascular homeostasis is unknown. Here we examined how the dual absence of RGS2 and 5 (Rgs2/5 dbKO) affects blood pressure and cardiac structure and function. We found that Rgs2/5 dbKO mice showed left ventricular dilatation at baseline by echocardiography. Cardiac contractile response to dobutamine stress test was sex-dependently reduced in male Rgs2/5 dbKO relative to WT mice. When subjected to surgery-induced stress, male Rgs2/5 dbKO mice had 75% mortality within 72-96 h after surgery, accompanied by elevated baseline blood pressure and decreased cardiac contractile function. At the cellular level, cardiomyocytes (CM) from Rgs2/5 dbKO mice showed augmented Ca transients and increased incidence of arrhythmia without augmented contractile response to electrical field stimulation (EFS) and activation of β-adrenergic receptors (βAR) with isoproterenol. Dual loss of Rgs2 and 5 suppressed forskolin-induced cAMP production, which was restored by G inactivation with pertussis toxin that also reduced arrhythmogenesis during EFS or βAR stimulation. Cardiomyocyte NCX and PMCA mRNA expression was unaffected in Rgs2/5 dbKO male mice. However, there was an exaggerated elevation of EFS-induced cytoplasmic Ca in the presence of SERCA blockade with thapsigargin. We conclude that RGS2 and 5 promote normal ventricular rhythm by coordinating their regulatory activity towards G signaling and facilitating cardiomyocyte calcium handling.
ISSN:1095-8584