Real-Time and Accurate UAV Pedestrian Detection for Social Distancing Monitoring in COVID-19 Pandemic

Coronavirus Disease 2019 (COVID-19) is a highly infectious virus that has created a health crisis for people all over the world. Social distancing has proved to be an effective non-pharmaceutical measure to slow down the spread of COVID-19. As unmanned aerial vehicle (UAV) is a flexible mobile platf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2022-01, Vol.24, p.2069-2083
Hauptverfasser: Shao, Zhenfeng, Cheng, Gui, Ma, Jiayi, Wang, Zhongyuan, Wang, Jiaming, Li, Deren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coronavirus Disease 2019 (COVID-19) is a highly infectious virus that has created a health crisis for people all over the world. Social distancing has proved to be an effective non-pharmaceutical measure to slow down the spread of COVID-19. As unmanned aerial vehicle (UAV) is a flexible mobile platform, it is a promising option to use UAV for social distance monitoring. Therefore, we propose a lightweight pedestrian detection network to accurately detect pedestrians by human head detection in real-time and then calculate the social distancing between pedestrians on UAV images. In particular, our network follows the PeleeNet as backbone and further incorporates the multi-scale features and spatial attention to enhance the features of small objects, like human heads. The experimental results on Merge-Head dataset show that our method achieves 92.22% AP (average precision) and 76 FPS (frames per second), outperforming YOLOv3 models and SSD models and enabling real-time detection in actual applications. The ablation experiments also indicate that multi-scale feature and spatial attention significantly contribute the performance of pedestrian detection. The test results on UAV-Head dataset show that our method can also achieve high precision pedestrian detection on UAV images with 88.5% AP and 75 FPS. In addition, we have conducted a precision calibration test to obtain the transformation matrix from images (vertical images and tilted images) to real-world coordinate. Based on the accurate pedestrian detection and the transformation matrix, the social distancing monitoring between individuals is reliably achieved.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2021.3075566