Supramolecular structures of terbium() porphyrin double-decker complexes on a single-walled carbon nanotube surface
This work mainly reports the observation of novel supramolecular structures of Tb III -5,15-bisdodecylporphyrin (BDP, C12P) double-decker complexes on the surfaces of single-walled carbon nanotubes (SWNTs) performed by scanning tunneling microscopy under an ultra-high vacuum and low temperature, ato...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-09, Vol.9 (48), p.28135-28145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work mainly reports the observation of novel supramolecular structures of Tb
III
-5,15-bisdodecylporphyrin (BDP, C12P) double-decker complexes on the surfaces of single-walled carbon nanotubes (SWNTs) performed by scanning tunneling microscopy under an ultra-high vacuum and low temperature, atomic force microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and ultraviolet-visible spectroscopy. The molecules formed a well-ordered self-assembled helix-shaped array with regular periodicity on the tube surface. Additionally, some magnetic properties of the BDP-molecule as well as the resulting BDP-SWNT composites were investigated by superconducting quantum interference measurements. The molecule exhibits single-molecule magnetic (SMM) properties and the composite's magnetization increases almost linearly with decreasing temperature which is possibly due to the coupling between porphyrin molecules and SWNTs. Consequently, this may enable the development of more advanced spintronic devices based on porphyrin-nanocarbon composites.
For the first time, using scanning probe microscopy, the supramolecular structures of terbium porphyrin double-decker complexes were observed on single-walled carbon nanotubes surfaces, where the molecules formed a well-ordered self-assembled array. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c9ra05818d |