Disheveled binding antagonist of β-catenin 1 interacted with β-catenin and connexin 43 in human-induced pluripotent stem cells-derived cardiomyocytes

Previously, we demonstrated that the disheveled binding antagonist of β-catenin 1 (DACT1) was involved in atrial fibrillation by regulating the reorganization of connexin 43 and β-catenin in cardiomyocytes. Little is known, however, about DACT1 in human normal myocardial cells. Therefore, we used ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineered 2022-05, Vol.13 (5), p.11594-11601
Hauptverfasser: Hou, Jian, Huang, Suiqing, Long, Yan, Feng, Kangni, Shang, Liqun, Zhou, Zhuoming, Yue, Yuan, Huang, Xiaolin, Chen, Guangxian, Wu, Zhongkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously, we demonstrated that the disheveled binding antagonist of β-catenin 1 (DACT1) was involved in atrial fibrillation by regulating the reorganization of connexin 43 and β-catenin in cardiomyocytes. Little is known, however, about DACT1 in human normal myocardial cells. Therefore, we used cardiomyocytes (CMs) derived from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to investigate the role of DACT1 and its connection with β-catenin and connexin 43. While the ESC-CMs and iPSC-CMs were differentiated using commercial differentiation kits, the cardiac-specific markers were detected by immunofluorescence. The expression level of DACT1 was detected using western blotting, whereas the interaction of DACT1 and connexin 43 or β-catenin was detected by immunofluorescence and co-immunoprecipitation (co-IP) assays. Both H1-CMs and SF-CMs were immunostained for cardiac-specific markers, including Troponin I, Troponin T, α-actinin, NKX2.5, and GATA6. While DACT1 was not expressed in both H1 ESCs and SF-iPSCs, it was, however, highly expressed in differentiated CMs, being also localized in the cytoplasm and the nucleus of differentiated CMs. Interestingly, the DACT1 expression in different nuclei was different in the same multinucleated cell. Moreover, DACT1 colocalized with β-catenin in both the cytoplasm and nucleus of differentiated CMs, and it also colocalized with connexin 43 in the perinuclear region and the gap junctions of differentiated CMs. Co-IP results showed that DACT1 could directly bind to β-catenin and connexin 43. Taken together, DACT1 interacted with β-catenin and connexin 43 in human-induced pluripotent stem cells-derived cardiomyocytes.
ISSN:2165-5979
2165-5987
DOI:10.1080/21655979.2022.2070448