NiFe 2 O 4 /Ketjen Black Composites as Efficient Membrane Separators to Suppress the Shuttle Effect for Long-Life Lithium-Sulfur Batteries

Lithium-sulfur batteries exhibit great potential as one of the most promising energy storage devices due to their high theoretical energy density and specific capacity. However, the shuttle effect of the soluble polysulfide intermediates could lead to a severe self-discharge effect that hinders the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-04, Vol.12 (8)
Hauptverfasser: Jiang, Wen, Dong, Lingling, Liu, Shuanghui, Zhao, Shuangshuang, Han, Kairu, Zhang, Weimin, Pan, Kefeng, Zhang, Lipeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-sulfur batteries exhibit great potential as one of the most promising energy storage devices due to their high theoretical energy density and specific capacity. However, the shuttle effect of the soluble polysulfide intermediates could lead to a severe self-discharge effect that hinders the development of lithium-sulfur batteries. In this paper, a battery separator has been prepared based on NiFe O /Ketjen Black (KB) modification by a simple method to solve the shuttle effect and improve the battery performance. The as-modified separator with the combination of small-size KB and NiFe O nanoparticles can effectively use the physical and chemical double-layer adsorption to prevent polysulfide from the shuttle. Moreover, it can give full play to its catalytic effect to improve the conversion efficiency of polysulfide and activate the dead sulfur. The results show that the NiFe O /KB-modified separator battery still maintains a discharge capacity of 406.27 mAh/g after 1000 stable cycles at a high current density of 1 C. Furthermore, the coulombic efficiency remains at 99%, and the average capacity attenuation per cycle is only 0.051%. This simple and effective method can significantly improve the application capacity of lithium-sulfur batteries.
ISSN:2079-4991
2079-4991