Circular biomanufacturing through harvesting solar energy and CO 2

Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2022-07, Vol.27 (7), p.655
Hauptverfasser: Sørensen, Mette, Andersen-Ranberg, Johan, Hankamer, Ben, Møller, Birger Lindberg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 655
container_title Trends in plant science
container_volume 27
creator Sørensen, Mette
Andersen-Ranberg, Johan
Hankamer, Ben
Møller, Birger Lindberg
description Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO . Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.
doi_str_mv 10.1016/j.tplants.2022.03.001
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_35396170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35396170</sourcerecordid><originalsourceid>FETCH-pubmed_primary_353961703</originalsourceid><addsrcrecordid>eNqFjcsKgkAUQIcg0h6fUMwPON2ZKbVtUrRr015GHV_oKPMI_PsQat3qwOHAQWhPgVCg4bElduyEsoYwYIwAJwB0gXwaR3Fw4hHz0NqYFgAiGocr5PEzv4Q0Ah9dk0bnrhMaZ83QC-VKkVunG1VhW-vBVTWuhX5LY2dlhrmUSupqwkIVOHlitkXLUnRG7r7coMP99koeweiyXhbpqJte6Cn9Tfnf4ANe5D7M</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Circular biomanufacturing through harvesting solar energy and CO 2</title><source>Elsevier ScienceDirect Journals</source><creator>Sørensen, Mette ; Andersen-Ranberg, Johan ; Hankamer, Ben ; Møller, Birger Lindberg</creator><creatorcontrib>Sørensen, Mette ; Andersen-Ranberg, Johan ; Hankamer, Ben ; Møller, Birger Lindberg</creatorcontrib><description>Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO . Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.</description><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2022.03.001</identifier><identifier>PMID: 35396170</identifier><language>eng</language><publisher>England</publisher><ispartof>Trends in plant science, 2022-07, Vol.27 (7), p.655</ispartof><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35396170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sørensen, Mette</creatorcontrib><creatorcontrib>Andersen-Ranberg, Johan</creatorcontrib><creatorcontrib>Hankamer, Ben</creatorcontrib><creatorcontrib>Møller, Birger Lindberg</creatorcontrib><title>Circular biomanufacturing through harvesting solar energy and CO 2</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO . Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.</description><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFjcsKgkAUQIcg0h6fUMwPON2ZKbVtUrRr015GHV_oKPMI_PsQat3qwOHAQWhPgVCg4bElduyEsoYwYIwAJwB0gXwaR3Fw4hHz0NqYFgAiGocr5PEzv4Q0Ah9dk0bnrhMaZ83QC-VKkVunG1VhW-vBVTWuhX5LY2dlhrmUSupqwkIVOHlitkXLUnRG7r7coMP99koeweiyXhbpqJte6Cn9Tfnf4ANe5D7M</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Sørensen, Mette</creator><creator>Andersen-Ranberg, Johan</creator><creator>Hankamer, Ben</creator><creator>Møller, Birger Lindberg</creator><scope>NPM</scope></search><sort><creationdate>202207</creationdate><title>Circular biomanufacturing through harvesting solar energy and CO 2</title><author>Sørensen, Mette ; Andersen-Ranberg, Johan ; Hankamer, Ben ; Møller, Birger Lindberg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_353961703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sørensen, Mette</creatorcontrib><creatorcontrib>Andersen-Ranberg, Johan</creatorcontrib><creatorcontrib>Hankamer, Ben</creatorcontrib><creatorcontrib>Møller, Birger Lindberg</creatorcontrib><collection>PubMed</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sørensen, Mette</au><au>Andersen-Ranberg, Johan</au><au>Hankamer, Ben</au><au>Møller, Birger Lindberg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circular biomanufacturing through harvesting solar energy and CO 2</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2022-07</date><risdate>2022</risdate><volume>27</volume><issue>7</issue><spage>655</spage><pages>655-</pages><eissn>1878-4372</eissn><abstract>Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO . Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.</abstract><cop>England</cop><pmid>35396170</pmid><doi>10.1016/j.tplants.2022.03.001</doi></addata></record>
fulltext fulltext
identifier EISSN: 1878-4372
ispartof Trends in plant science, 2022-07, Vol.27 (7), p.655
issn 1878-4372
language eng
recordid cdi_pubmed_primary_35396170
source Elsevier ScienceDirect Journals
title Circular biomanufacturing through harvesting solar energy and CO 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circular%20biomanufacturing%20through%20harvesting%20solar%20energy%20and%20CO%202&rft.jtitle=Trends%20in%20plant%20science&rft.au=S%C3%B8rensen,%20Mette&rft.date=2022-07&rft.volume=27&rft.issue=7&rft.spage=655&rft.pages=655-&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2022.03.001&rft_dat=%3Cpubmed%3E35396170%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35396170&rfr_iscdi=true