Circular biomanufacturing through harvesting solar energy and CO 2
Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the con...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2022-07, Vol.27 (7), p.655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO
. Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions. |
---|---|
ISSN: | 1878-4372 |