Small lesion depiction and quantification accuracy of oncological 18 F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction

To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with F-FDG-avid small lung tumors, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EJNMMI physics 2022-03, Vol.9 (1), p.23
Hauptverfasser: Xu, Lei, Li, Ru-Shuai, Wu, Run-Ze, Yang, Rui, You, Qin-Qin, Yao, Xiao-Chen, Xie, Hui-Fang, Lv, Yang, Dong, Yun, Wang, Feng, Meng, Qing-Le
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. The CTN phantom was filled with F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with F-FDG-avid lung lesions (diameter 
ISSN:2197-7364
2197-7364