Molecular Signaling Mechanisms for the Antidepressant Effects of NLX-101, a Selective Cortical 5-HT 1A Receptor Biased Agonist

Depression is the most prevalent of the mental illnesses and serotonin (5-hydroxytryptamine, 5-HT) is considered to be the major neurotransmitter involved in its etiology and treatment. In this context, 5-HT receptors have attracted interest as targets for therapeutic intervention. Notably the activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-03, Vol.15 (3)
Hauptverfasser: Cabanu, Sharon, Pilar-Cuéllar, Fuencisla, Zubakina, Paula, Florensa-Zanuy, Eva, Senserrich, Júlia, Newman-Tancredi, Adrian, Adell, Albert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Depression is the most prevalent of the mental illnesses and serotonin (5-hydroxytryptamine, 5-HT) is considered to be the major neurotransmitter involved in its etiology and treatment. In this context, 5-HT receptors have attracted interest as targets for therapeutic intervention. Notably the activation of presynaptic 5-HT autoreceptors delays antidepressant effects whereas the stimulation of postsynaptic 5-HT heteroreceptors is needed for an antidepressant action. NLX-101 (also known as F15599) is a selective biased agonist which exhibits preferred activation of cortical over brain stem 5-HT receptors. Here, we used behavioral, neurochemical and molecular methods to examine the antidepressant-like effects in rats of a single dose of NLX-101 (0.16 mg/kg, i.p.). NLX-101 reduced immobility in the forced swim test when measured 30 min but not 24 h after drug administration. NLX-101 increased extracellular concentrations of glutamate and dopamine in the medial prefrontal cortex, but no changes were detected in the efflux of noradrenaline or 5-HT. NLX-101 also produced an increase in the activation of pmTOR, pERK1/2 and pAkt, and the expression of PSD95 and GluA1, which may contribute to its rapid antidepressant action.
ISSN:1424-8247
1424-8247