Inducing chiral superconductivity on honeycomb lattice systems
Superconductivity in graphene-based systems has recently attracted much attention, as either intrinsic behavior or induced by proximity to a superconductor may lead to interesting topological phases and symmetries of the pairing function. A prominent system considers the pairing to have chiral symme...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2022-05, Vol.34 (20), p.205403 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconductivity in graphene-based systems has recently attracted much attention, as either intrinsic behavior or induced by proximity to a superconductor may lead to interesting topological phases and symmetries of the pairing function. A prominent system considers the pairing to have chiral symmetry. The question arises as to the effect of possible spin-orbit coupling on the resulting superconducting quasiparticle (QP) spectrum. Utilizing a Bogolyubov-de Gennes (BdG) Hamiltonian, we explore the interplay of different interaction terms in the system, and their role in generating complex Berry curvatures in the QP spectrum, as well as non-trivial topological behavior. We demonstrate that the topology of the BdG Hamiltonian in these systems may result in the appearance of edge states along the zigzag edges of nanoribbons in the appropriate regime. For suitable chemical potential and superconducting pairing strength, we find the appearance of robust midgap states at zigzag edges, well protected by large excitation gaps and momentum transfer. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/1361-648X/ac5a03 |