K-selective percolation: A simple model leading to a rich repertoire of phase transitions

We propose a K-selective percolation process as a model for iterative removals of nodes with a specific intermediate degree in complex networks. In the model, a random node with degree K is deactivated one by one until no more nodes with degree K remain. The non-monotonic response of the giant compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2022-02, Vol.32 (2), p.023115-023115
Hauptverfasser: Kim, Jung-Ho, Goh, K.-I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a K-selective percolation process as a model for iterative removals of nodes with a specific intermediate degree in complex networks. In the model, a random node with degree K is deactivated one by one until no more nodes with degree K remain. The non-monotonic response of the giant component size on various synthetic and real-world networks implies a conclusion that a network can be more robust against such a selective attack by removing further edges. From a theoretical perspective, the K-selective percolation process exhibits a rich repertoire of phase transitions, including double transitions of hybrid and continuous, as well as reentrant transitions. Notably, we observe a tricritical-like point on Erdős–Rényi networks. We also examine a discontinuous transition with unusual order parameter fluctuation and distribution on simple cubic lattices, which does not appear in other percolation models with cascade processes. Finally, we perform finite-size scaling analysis to obtain critical exponents on various transition points, including those exotic ones.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0081253