Ocular drug delivery of progesterone using nanoparticles

Abstract The objective of this study was to evaluate ocular delivery of a lipid-soluble drug, [3H]progesterone, using nanoparticles. Polybutylcyanoacrylate nanoparticles loaded with [3H]progesterone were prepared by an emulsion polymerization technique using a hydrophilic continuous phase. The resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microencapsulation 1986, Vol.3 (3), p.213-218
Hauptverfasser: Li, Vincent H. K., Wood, Ray W., Kreuter, Jorg, Harmia, T., Robinson, Joseph R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The objective of this study was to evaluate ocular delivery of a lipid-soluble drug, [3H]progesterone, using nanoparticles. Polybutylcyanoacrylate nanoparticles loaded with [3H]progesterone were prepared by an emulsion polymerization technique using a hydrophilic continuous phase. The resulting nanoparticle suspension contained 2x 10−5 M progesterone. It was found that, at equilibrium, 99 per cent of the progesterone resided in the nanoparticles and the remainder in the aqueous phase indicating an excellent encapsulation efficiency. In addition, an appropriate control solution of progesterone was prepared, which did not contain polybutylcyanoacrylate. Concentrations of [3H]progesterone in various ocular tissues of the albino rabbit were monitored at various times following topical administration of either the nanoparticle suspension or the control solutions. Comparison of the concentration-time profiles indicates that tissue concentration of progesterone following topical administration of nanoparticles is generally four to five times less than that obtained with control solutions. This decreased concentration suggests that, due to the high affinity of progesterone for the nanoparticles, the drug is being made less available for absorption during its residence time in the precorneal area. The utility of nanoparticles as an ocular drug delivery system may depend on optimizing lipophilic-hydrophilic properties of the polymer-drug system, in addition to increasing retention efficiency in the precorneal pocket.
ISSN:0265-2048
1464-5246
DOI:10.3109/02652048609031575