Effects of Increased Central Cholinergic Activity on the Metabolic Challenge Induced by Submaximal Exercise in Rats: Adrenomedullary Secretion Influences

Aim: The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology 2022-01, Vol.107 (1-2), p.46-53
Hauptverfasser: Rodrigues, Alex Guazzi, Campos, Helton Oliveira, Drummond, Lucas Rios, Marubayashi, Umeko, Coimbra, Cândido Celso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central cholinergic system. Methods: Wistar rats were divided into sham-saline (sham-SAL), sham-PHY, adrenal medullectomy-SAL, and ADM-PHY groups. The plasma concentrations of glucose, lactate, and FFAs were determined immediately before and after i.c.v. injection of 20 μL of SAL or PHY at rest and during running exercise on a treadmill. Results: The i.c.v. injection of PHY at rest increased plasma glucose in the sham group, but not in the ADM group. An increase in plasma glucose, lactate, and FFAs mobilization from adipose tissue was observed during physical exercise in the sham-SAL group; however, the increase in plasma glucose was greater with i.c.v. PHY. Moreover, the hyperglycemia induced by exercise and PHY in the ADM group were blunted by ADM, whereas FFA mobilization was unaffected. Conclusion: These results indicate that there is a dual metabolic control by which activation of the central cholinergic pathway increases plasma glucose but not FFA during rest and exercise, and that this hyperglycemic response is dependent on adrenomedullary secretion.
ISSN:0031-7012
1423-0313
DOI:10.1159/000519807