Butylated hydroxyl-toluene, 2,4-Di-tert-butylphenol, and phytol of Chlorella sp. protect the PC12 cell line against H 2 O 2 -induced neurotoxicity
Oxidative stress is considered the main cause of cellular damage in a number of neurodegenerative disorders. One suitable ways to prevent cell damage is the use of the exogenous antioxidant capacity of natural products, such as microalgae. In the present study, four microalgae extracts, isolated fro...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2022-01, Vol.145, p.112415 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oxidative stress is considered the main cause of cellular damage in a number of neurodegenerative disorders. One suitable ways to prevent cell damage is the use of the exogenous antioxidant capacity of natural products, such as microalgae. In the present study, four microalgae extracts, isolated from the Persian Gulf, were screened to analyze their potential antioxidant activity and free radical scavenging using ABTS, DPPH, and FRAP methods. The methanolic extracts (D1M) of green microalgae derived from Chlorella sp. exhibited potent free radical scavenging activity. In order to characterize microalgae species, microscopic observations and analysis of the expression of 18S rRNA were performed. The antioxidant and neuroprotective effects of D1M on H
O
-induced toxicity in PC12 cells were investigated. The results demonstrated that D1M significantly decreased the release of nitric oxide (NO), formation of intracellular reactive oxygen species (ROS), and the level of malondialdehyde (MDA), whereas it enhanced the content of glutathione (GSH), and activity of heme oxygenase 1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and catalase (CAT) in PC12 cells exposed to H
O
. The pretreatment of D1M improved cell viability as measured by the MTT assay and invert microscopy, reduced cell apoptosis as examined by flow cytometry analysis, increased mitochondrial membrane potential (MMP), and diminished caspase-3 activity. The GC/MS analysis revealed that D1M ingredients have powerful antioxidant and anti-inflammatory compounds, such as butylated hydroxytoluene (BHT), 2,4-di-tert-butyl-phenol (2,4-DTBP), and phytol. These results suggested that Chlorella sp. extracts have strong potential to be applied as neuroprotective agents, for the treatment of neurodegenerative disorders. |
---|---|
ISSN: | 1950-6007 |