Functionalized self-assembled peptide RAD/Dentonin hydrogel scaffold promotes dental pulp regeneration

RADA16-I is an ion-complementary self-assembled peptide with a regular folded secondary conformation and can be assembled into an ordered nanostructure. Dentonin is an extracellular matrix phosphate glycoprotein functional peptide motif-containing RGD and SGDG motifs. In this experiment, we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2022-01, Vol.17 (1), p.15009
Hauptverfasser: Liu, Yijuan, Fan, Lina, Lin, Xuemei, Zou, Luning, Li, Yaoyao, Ge, Xinting, Fu, Weihao, Zhang, Zonghao, Xiao, Kuancheng, Lv, Hongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RADA16-I is an ion-complementary self-assembled peptide with a regular folded secondary conformation and can be assembled into an ordered nanostructure. Dentonin is an extracellular matrix phosphate glycoprotein functional peptide motif-containing RGD and SGDG motifs. In this experiment, we propose to combine RAD and Dentonin to form a functionalized self-assembled peptide RAD/Dentonin hydrogel scaffold. Furthermore, we expect that the RAD with the addition of functional motif Dentonin can promote pulp regeneration. The study analyzed the physicochemical properties of RAD/Dentonin through circular dichroism, morphology scanning, and rheology. Besides, we examined the scaffold's biocompatibility by immunofluorescent staining, CCK-8 method, Live/Dead fluorescent staining, and 3D reconstruction. Finally, we applied ALP activity assay, RT-qPCR, and Alizarin red S staining to detect the effect of RAD/Dentonin on the odontogenic differentiation of human dental pulp stem cells (hDPSCs). The results showed that RAD/Dentonin spontaneously assembles into a hydrogel with a -sheet-based nanofiber network structure. , RAD/Dentonin has superior biocompatibility and enhances adhesive proliferation, migration, odontogenic differentiation, and mineralization deposition of hDPSCs. In conclusion, the novel self-assembled peptide RAD/Dentonin is a new scaffold material suitable for cell culture and has promising applications as a scaffold for endodontic tissue engineering.
ISSN:1748-6041
1748-605X
DOI:10.1088/1748-605X/ac3928