Spatio-temporal warping for myoelectric control: an offline, feasibility study

The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at bes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2021-12, Vol.18 (6), p.66028
Hauptverfasser: Jabbari, Milad, Khushaba, Rami, Nazarpour, Kianoush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 66028
container_title Journal of neural engineering
container_volume 18
creator Jabbari, Milad
Khushaba, Rami
Nazarpour, Kianoush
description The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account. Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals. . Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size. This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.
doi_str_mv 10.1088/1741-2552/ac387f
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34757954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596458594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</originalsourceid><addsrcrecordid>eNp1kLtPwzAYxC0EolDYmZBHhobaSRw7bKjiJVUw0N1y_ECunDjYjlD-e1K1dGP6Hro76X4A3GB0jxFjS0xLnOWE5EshC0bNCbg4vk6Pe4Vm4DLGLUIFpjU6B7OipITWpLwA75-9SNZnSbe9D8LBHxF6231B4wNsR6-dlilYCaXvUvDuAYoOemOc7fQCGi2ibayzaYQxDWq8AmdGuKivD3MONs9Pm9Vrtv54eVs9rjNZUJYyXCFktDZNpXKJSMNoiQxpptPIqlaKIY0UI6USumjkVNVIRTFlqCpM3uhiDu72sX3w34OOibc2Su2c6LQfIs9JXZWEkbqcpGgvlcHHGLThfbCtCCPHiO8g8h0lviPG9xAny-0hfWharY6GP2qTYLEXWN_zrR9CN3X9P-8Xjtp8kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596458594</pqid></control><display><type>article</type><title>Spatio-temporal warping for myoelectric control: an offline, feasibility study</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jabbari, Milad ; Khushaba, Rami ; Nazarpour, Kianoush</creator><creatorcontrib>Jabbari, Milad ; Khushaba, Rami ; Nazarpour, Kianoush</creatorcontrib><description>The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account. Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals. . Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size. This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac387f</identifier><identifier>PMID: 34757954</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Artificial Limbs ; deep learning ; electromyographic signals (EMG) ; Electromyography - methods ; Feasibility Studies ; feature extraction ; myoelectric control ; Neural Networks, Computer ; spatio-temporal information</subject><ispartof>Journal of neural engineering, 2021-12, Vol.18 (6), p.66028</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</citedby><cites>FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</cites><orcidid>0000-0001-7127-9115 ; 0000-0001-8528-8979 ; 0000-0003-4217-0254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac387f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34757954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabbari, Milad</creatorcontrib><creatorcontrib>Khushaba, Rami</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><title>Spatio-temporal warping for myoelectric control: an offline, feasibility study</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account. Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals. . Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size. This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.</description><subject>Artificial Limbs</subject><subject>deep learning</subject><subject>electromyographic signals (EMG)</subject><subject>Electromyography - methods</subject><subject>Feasibility Studies</subject><subject>feature extraction</subject><subject>myoelectric control</subject><subject>Neural Networks, Computer</subject><subject>spatio-temporal information</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kLtPwzAYxC0EolDYmZBHhobaSRw7bKjiJVUw0N1y_ECunDjYjlD-e1K1dGP6Hro76X4A3GB0jxFjS0xLnOWE5EshC0bNCbg4vk6Pe4Vm4DLGLUIFpjU6B7OipITWpLwA75-9SNZnSbe9D8LBHxF6231B4wNsR6-dlilYCaXvUvDuAYoOemOc7fQCGi2ibayzaYQxDWq8AmdGuKivD3MONs9Pm9Vrtv54eVs9rjNZUJYyXCFktDZNpXKJSMNoiQxpptPIqlaKIY0UI6USumjkVNVIRTFlqCpM3uhiDu72sX3w34OOibc2Su2c6LQfIs9JXZWEkbqcpGgvlcHHGLThfbCtCCPHiO8g8h0lviPG9xAny-0hfWharY6GP2qTYLEXWN_zrR9CN3X9P-8Xjtp8kQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jabbari, Milad</creator><creator>Khushaba, Rami</creator><creator>Nazarpour, Kianoush</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7127-9115</orcidid><orcidid>https://orcid.org/0000-0001-8528-8979</orcidid><orcidid>https://orcid.org/0000-0003-4217-0254</orcidid></search><sort><creationdate>20211201</creationdate><title>Spatio-temporal warping for myoelectric control: an offline, feasibility study</title><author>Jabbari, Milad ; Khushaba, Rami ; Nazarpour, Kianoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Limbs</topic><topic>deep learning</topic><topic>electromyographic signals (EMG)</topic><topic>Electromyography - methods</topic><topic>Feasibility Studies</topic><topic>feature extraction</topic><topic>myoelectric control</topic><topic>Neural Networks, Computer</topic><topic>spatio-temporal information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbari, Milad</creatorcontrib><creatorcontrib>Khushaba, Rami</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbari, Milad</au><au>Khushaba, Rami</au><au>Nazarpour, Kianoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-temporal warping for myoelectric control: an offline, feasibility study</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>66028</spage><pages>66028-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account. Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals. . Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size. This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34757954</pmid><doi>10.1088/1741-2552/ac387f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7127-9115</orcidid><orcidid>https://orcid.org/0000-0001-8528-8979</orcidid><orcidid>https://orcid.org/0000-0003-4217-0254</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2021-12, Vol.18 (6), p.66028
issn 1741-2560
1741-2552
language eng
recordid cdi_pubmed_primary_34757954
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Artificial Limbs
deep learning
electromyographic signals (EMG)
Electromyography - methods
Feasibility Studies
feature extraction
myoelectric control
Neural Networks, Computer
spatio-temporal information
title Spatio-temporal warping for myoelectric control: an offline, feasibility study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-temporal%20warping%20for%20myoelectric%20control:%20an%20offline,%20feasibility%20study&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Jabbari,%20Milad&rft.date=2021-12-01&rft.volume=18&rft.issue=6&rft.spage=66028&rft.pages=66028-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ac387f&rft_dat=%3Cproquest_pubme%3E2596458594%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596458594&rft_id=info:pmid/34757954&rfr_iscdi=true