Spatio-temporal warping for myoelectric control: an offline, feasibility study
The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at bes...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2021-12, Vol.18 (6), p.66028 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 66028 |
container_title | Journal of neural engineering |
container_volume | 18 |
creator | Jabbari, Milad Khushaba, Rami Nazarpour, Kianoush |
description | The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account.
Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals.
. Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size.
This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control. |
doi_str_mv | 10.1088/1741-2552/ac387f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34757954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596458594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</originalsourceid><addsrcrecordid>eNp1kLtPwzAYxC0EolDYmZBHhobaSRw7bKjiJVUw0N1y_ECunDjYjlD-e1K1dGP6Hro76X4A3GB0jxFjS0xLnOWE5EshC0bNCbg4vk6Pe4Vm4DLGLUIFpjU6B7OipITWpLwA75-9SNZnSbe9D8LBHxF6231B4wNsR6-dlilYCaXvUvDuAYoOemOc7fQCGi2ibayzaYQxDWq8AmdGuKivD3MONs9Pm9Vrtv54eVs9rjNZUJYyXCFktDZNpXKJSMNoiQxpptPIqlaKIY0UI6USumjkVNVIRTFlqCpM3uhiDu72sX3w34OOibc2Su2c6LQfIs9JXZWEkbqcpGgvlcHHGLThfbCtCCPHiO8g8h0lviPG9xAny-0hfWharY6GP2qTYLEXWN_zrR9CN3X9P-8Xjtp8kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596458594</pqid></control><display><type>article</type><title>Spatio-temporal warping for myoelectric control: an offline, feasibility study</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jabbari, Milad ; Khushaba, Rami ; Nazarpour, Kianoush</creator><creatorcontrib>Jabbari, Milad ; Khushaba, Rami ; Nazarpour, Kianoush</creatorcontrib><description>The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account.
Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals.
. Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size.
This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ac387f</identifier><identifier>PMID: 34757954</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Artificial Limbs ; deep learning ; electromyographic signals (EMG) ; Electromyography - methods ; Feasibility Studies ; feature extraction ; myoelectric control ; Neural Networks, Computer ; spatio-temporal information</subject><ispartof>Journal of neural engineering, 2021-12, Vol.18 (6), p.66028</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</citedby><cites>FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</cites><orcidid>0000-0001-7127-9115 ; 0000-0001-8528-8979 ; 0000-0003-4217-0254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ac387f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34757954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jabbari, Milad</creatorcontrib><creatorcontrib>Khushaba, Rami</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><title>Spatio-temporal warping for myoelectric control: an offline, feasibility study</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account.
Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals.
. Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size.
This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.</description><subject>Artificial Limbs</subject><subject>deep learning</subject><subject>electromyographic signals (EMG)</subject><subject>Electromyography - methods</subject><subject>Feasibility Studies</subject><subject>feature extraction</subject><subject>myoelectric control</subject><subject>Neural Networks, Computer</subject><subject>spatio-temporal information</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kLtPwzAYxC0EolDYmZBHhobaSRw7bKjiJVUw0N1y_ECunDjYjlD-e1K1dGP6Hro76X4A3GB0jxFjS0xLnOWE5EshC0bNCbg4vk6Pe4Vm4DLGLUIFpjU6B7OipITWpLwA75-9SNZnSbe9D8LBHxF6231B4wNsR6-dlilYCaXvUvDuAYoOemOc7fQCGi2ibayzaYQxDWq8AmdGuKivD3MONs9Pm9Vrtv54eVs9rjNZUJYyXCFktDZNpXKJSMNoiQxpptPIqlaKIY0UI6USumjkVNVIRTFlqCpM3uhiDu72sX3w34OOibc2Su2c6LQfIs9JXZWEkbqcpGgvlcHHGLThfbCtCCPHiO8g8h0lviPG9xAny-0hfWharY6GP2qTYLEXWN_zrR9CN3X9P-8Xjtp8kQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jabbari, Milad</creator><creator>Khushaba, Rami</creator><creator>Nazarpour, Kianoush</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7127-9115</orcidid><orcidid>https://orcid.org/0000-0001-8528-8979</orcidid><orcidid>https://orcid.org/0000-0003-4217-0254</orcidid></search><sort><creationdate>20211201</creationdate><title>Spatio-temporal warping for myoelectric control: an offline, feasibility study</title><author>Jabbari, Milad ; Khushaba, Rami ; Nazarpour, Kianoush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-1600feefb6d2c05b8740f5bb6dfc69dd80e0d854dae3bc108fcd7178063f2be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Limbs</topic><topic>deep learning</topic><topic>electromyographic signals (EMG)</topic><topic>Electromyography - methods</topic><topic>Feasibility Studies</topic><topic>feature extraction</topic><topic>myoelectric control</topic><topic>Neural Networks, Computer</topic><topic>spatio-temporal information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jabbari, Milad</creatorcontrib><creatorcontrib>Khushaba, Rami</creatorcontrib><creatorcontrib>Nazarpour, Kianoush</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabbari, Milad</au><au>Khushaba, Rami</au><au>Nazarpour, Kianoush</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-temporal warping for myoelectric control: an offline, feasibility study</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>18</volume><issue>6</issue><spage>66028</spage><pages>66028-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account.
Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals.
. Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size.
This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>34757954</pmid><doi>10.1088/1741-2552/ac387f</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7127-9115</orcidid><orcidid>https://orcid.org/0000-0001-8528-8979</orcidid><orcidid>https://orcid.org/0000-0003-4217-0254</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2021-12, Vol.18 (6), p.66028 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_pubmed_primary_34757954 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Artificial Limbs deep learning electromyographic signals (EMG) Electromyography - methods Feasibility Studies feature extraction myoelectric control Neural Networks, Computer spatio-temporal information |
title | Spatio-temporal warping for myoelectric control: an offline, feasibility study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-temporal%20warping%20for%20myoelectric%20control:%20an%20offline,%20feasibility%20study&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Jabbari,%20Milad&rft.date=2021-12-01&rft.volume=18&rft.issue=6&rft.spage=66028&rft.pages=66028-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2552/ac387f&rft_dat=%3Cproquest_pubme%3E2596458594%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596458594&rft_id=info:pmid/34757954&rfr_iscdi=true |