Spatio-temporal warping for myoelectric control: an offline, feasibility study

The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at bes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2021-12, Vol.18 (6), p.66028
Hauptverfasser: Jabbari, Milad, Khushaba, Rami, Nazarpour, Kianoush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficacy of an adopted feature extraction method directly affects the classification of the electromyographic (EMG) signals in myoelectric control applications. Most methods attempt to extract the dynamics of the multi-channel EMG signals in the time domain and on a channel-by-channel, or at best pairs of channels, basis. However, considering multi-channel information to build a similarity matrix has not been taken into account. Combining methods of long and short-term memory (LSTM) and dynamic temporal warping, we developed a new feature, called spatio-temporal warping (STW), for myoelectric signals. This method captures the spatio-temporal relationships of multi-channels EMG signals. . Across four online databases, we show that in terms of average classification error and standard deviation values, the STW feature outperforms traditional features by 5%-17%. In comparison to the more recent deep learning models, e.g. convolutional neural networks (CNNs), STW outperformed by 5%-18%. Also, STW showed enhanced performance when compared to the CNN + LSTM model by 2%-14%. All differences were statistically significant with a large effect size. This feasibility study provides evidence supporting the hypothesis that the STW feature of the EMG signals can enhance the classification accuracy in an explainable way when compared to recent deep learning methods. Future work includes real-time implementation of the method and testing for prosthesis control.
ISSN:1741-2560
1741-2552
DOI:10.1088/1741-2552/ac387f