The Roles of Liver Inflammation and the Insulin Signaling Pathway in PM2.5 Instillation-Induced Insulin Resistance in Wistar Rats

To elucidate the mechanism of how the liver participates in PM2.5-caused insulin resistance. A novel Wistar rat model was developed in this study by instilling a suspension of lyophilized PM2.5 sample (2.5 mg/kg, 5 mg/kg, or 10 mg/kg) collected from the atmosphere. Systemic insulin resistance indica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Disease markers 2021, Vol.2021, p.2821673-11, Article 2821673
Hauptverfasser: Zhang, Zhihua, Hu, Shujun, Fan, Ping, Li, Ling, Feng, Shanshan, Xiao, Huabing, Zhu, Lingyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To elucidate the mechanism of how the liver participates in PM2.5-caused insulin resistance. A novel Wistar rat model was developed in this study by instilling a suspension of lyophilized PM2.5 sample (2.5 mg/kg, 5 mg/kg, or 10 mg/kg) collected from the atmosphere. Systemic insulin resistance indicators, including serum fasting blood glucose (FBG), fasting insulin (FINS), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), and hemoglobin A1 (HbA1), were upregulated by the PM2.5 instillation. The area under the curve (AUCglu) calculated by intraperitoneal glucose tolerance testing (IPGTT) was also significantly greater in the PM2.5 instillation groups. Additionally, PM2.5 instillation was found to cause liver damage and inflammation. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were significantly elevated by PM2.5 instillation. PM2.5 also triggered IL-6 and TNF-α transcription but inhibited mRNA synthesis and suppressed signaling activation of the insulin-phosphoinositide 3-kinase- (PI3K-) Akt-glucose transporter 2 (GLUT2) pathway in the rat liver by reducing the ratio of phosphorylated Akt to phosphorylated insulin receptor substrate 1 (IRS-1). Thus, PM2.5-induced inflammation activation and insulin signaling inhibition in the rat liver contribute to the development of systemic insulin resistance.
ISSN:0278-0240
1875-8630
DOI:10.1155/2021/2821673