Digital Doppler-Cancellation Servo for Ultrastable Optical Frequency Dissemination Over Fiber

Progress made in optical references, including ultrastable Fabry-Perot cavities, optical frequency combs, and optical atomic clocks, has driven the need for ultrastable optical fiber networks. Telecom-wavelength ultrapure optical signal transport has been demonstrated on distances ranging from the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2022-02, Vol.69 (2), p.878-885
Hauptverfasser: Mukherjee, Shambo, Millo, Jacques, Marechal, Baptiste, Denis, Severine, Goavec-Merou, Gwenhael, Friedt, Jean-Michel, Kersale, Yann, Lacroute, Clement
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Progress made in optical references, including ultrastable Fabry-Perot cavities, optical frequency combs, and optical atomic clocks, has driven the need for ultrastable optical fiber networks. Telecom-wavelength ultrapure optical signal transport has been demonstrated on distances ranging from the laboratory scale to the continental scale. In this article, we present a Doppler-cancellation setup based on a digital phase-locked loop (PLL) for ultrastable optical signal dissemination over fiber. The optical phase stabilization setup is based on a usual heterodyne Michelson-interferometer setup, while the software-defined radio (SDR) implementation of the PLL is based on a compact commercial board embedding a field-programmable gate array and analog-to-digital and digital-to-analog converters. Using three different configurations, including an undersampling method, we demonstrate a 20-m-long fiber link with residual fractional frequency instability as low as 10 −18 at 1000 s and optical phase noise of −70 dBc/Hz at 1 Hz with a telecom frequency carrier.
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2021.3125066