Preclinical efficacy study of a porous biopolymeric scaffold based on gelatin-hyaluronic acid-chondroitin sulfate in a porcine burn injury model: role of critical molecular markers (VEGFA, N-cadherin, COX-2), gamma sterilization efficacy and a comparison of healing potential to Integra

Development of scaffold from biopolymers can ease the requirements for donor skin autograft and plays an effective role in the treatment of burn wounds. In the current study, a porous foam based, bilayered hydrogel scaffold was developed using gelatin, hyaluronic acid and chondroitin sulfate (G-HA-C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical materials (Bristol) 2021-09, Vol.16 (5), p.55020
Hauptverfasser: Khurana, Amit, Banothu, Anil Kumar, Thanusha, A V, Nayal, Aradhana, Dinda, Amit Kumar, Singhal, Maneesh, Bharani, Kala Kumar, Koul, Veena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Development of scaffold from biopolymers can ease the requirements for donor skin autograft and plays an effective role in the treatment of burn wounds. In the current study, a porous foam based, bilayered hydrogel scaffold was developed using gelatin, hyaluronic acid and chondroitin sulfate (G-HA-CS). The fabricated scaffold was characterized physicochemically for pre- and post-sterilization efficacy by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). studies proved that the scaffold promoted cellular proliferation. The efficacy of G-HA-CS scaffold was compared with Integra™ at different time points (7, 14, 21 and 42 days), in a swine second degree burn wound model. Remarkable healing potential of the scaffold was evident from the wound contraction rate, reduction of IL-6, TNF- and C3. The expression of healing markers TGF- 1 and collagen 1 revealed significant skin regeneration with regulated fibroblast activation towards the late phase of healing ( < 0.001 at day 21 and 42 vs. control). Expression of Vascular Endothelial Growth Factor A (VEGFA), vimentin and N-cadherin were found to favor angiogenesis and skin regeneration. Mechanistically, scaffold promoted wound healing by modulation of CD-45, cyclooxygenase-2 and MMP-2. Thus, the promising results with foam based scaffold, comparable to Integra™ in swine burn injury model offer an innovative lead for clinical translation for effective management of burn wound.
ISSN:1748-6041
1748-605X
DOI:10.1088/1748-605X/ac1d3e