CTCF is a barrier for 2C-like reprogramming

Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-08, Vol.12 (1), p.4856-4856, Article 4856
Hauptverfasser: Olbrich, Teresa, Vega-Sendino, Maria, Tillo, Desiree, Wu, Wei, Zolnerowich, Nicholas, Pavani, Raphael, Tran, Andy D., Domingo, Catherine N., Franco, Mariajose, Markiewicz-Potoczny, Marta, Pegoraro, Gianluca, FitzGerald, Peter C., Kruhlak, Michael J., Lazzerini-Denchi, Eros, Nora, Elphege P., Nussenzweig, André, Ruiz, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming. Embryos at the 2-cell (2C) stage are totipotent, and overexpression of Dux transcription factor convert embryonic stem cells (ESCs) to a 2C-like state. Here the authors show that DUX-mediated 2C-like reprogramming is associated with DNA damage at CTCF sites and CTCF depletion promotes 2Clike conversion.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25072-x