Age- and gender-related differences in brain tissue microstructure revealed by multi-component T 2 relaxometry
In spite of extensive work, inconsistent findings and lack of specificity in most neuroimaging techniques used to examine age- and gender-related patterns in brain tissue microstructure indicate the need for additional research. Here, we performed the largest Multi-component T relaxometry cross-sect...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2021-10, Vol.106, p.68 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In spite of extensive work, inconsistent findings and lack of specificity in most neuroimaging techniques used to examine age- and gender-related patterns in brain tissue microstructure indicate the need for additional research. Here, we performed the largest Multi-component T
relaxometry cross-sectional study to date in healthy adults (N = 145, 18-60 years). Five quantitative microstructure parameters derived from various segments of the estimated T
spectra were evaluated, allowing a more specific interpretation of results in terms of tissue microstructure. We found similar age-related myelin water fraction (MWF) patterns in men and women but we also observed differential male related results including increased MWF content in a few white matter tracts, a faster decline with age of the intra- and extra-cellular water fraction and its T
relaxation time (i.e. steeper age related negative slopes) and a faster increase in the free and quasi-free water fraction, spanning the whole grey matter. Such results point to a sexual dimorphism in brain tissue microstructure and suggest a lesser vulnerability to age-related changes in women. |
---|---|
ISSN: | 1558-1497 |
DOI: | 10.1016/j.neurobiolaging.2021.06.002 |