(-)-Englerin-A Has Analgesic and Anti-Inflammatory Effects Independent of TRPC4 and 5

Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-06, Vol.22 (12), p.6380, Article 6380
Hauptverfasser: Valente, Joao de Sousa, Alawi, Khadija M., Bharde, Sabah, Zarban, Ali A., Kodji, Xenia, Thapa, Dibesh, Argunhan, Fulye, Barrett, Brentton, Nagy, Istvan, Brain, Susan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22126380