Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity

The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.4019-4019, Article 4019
Hauptverfasser: Isermann, Tamara, Şener, Özge Çiçek, Stender, Adrian, Klemke, Luisa, Winkler, Nadine, Neesse, Albrecht, Li, Jinyu, Wegwitz, Florian, Moll, Ute M., Schulz-Heddergott, Ramona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4019
container_issue 1
container_start_page 4019
container_title Nature communications
container_volume 12
creator Isermann, Tamara
Şener, Özge Çiçek
Stender, Adrian
Klemke, Luisa
Winkler, Nadine
Neesse, Albrecht
Li, Jinyu
Wegwitz, Florian
Moll, Ute M.
Schulz-Heddergott, Ramona
description The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53 R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A /p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53 R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion. Most mutant p53 heterozygous tumours undergo loss of the remaining wildtype (WT) p53 allele which leads to stabilization of the mutant p53 protein. Here, the authors show in an autochthonous colorectal cancer model that the WT p53 allele retains partial activity and suppresses the heat shock factor 1 (HSF1)- chaperone axis to prevent mutant p53 stabilisation and mutant p53 gain-of-function activities, thereby creating selective pressure for p53 loss-of-heterozygosity.
doi_str_mv 10.1038/s41467-021-24064-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34188043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ddfeb1901f9c402d9ea06899ab0fe557</doaj_id><sourcerecordid>2546980135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-b12dbbcff3bdf36fff26350d626d995619eddecef567bdbdaef2df543089c2a63</originalsourceid><addsrcrecordid>eNqNkk1rFTEUhgdRbKn9Ay5kwI0go_mazGQjyMXaQsFFdR3ycXKby3QyJpmW219v7p16bV2IWSQhed6Xcw5vVb3G6ANGtP-YGGa8axDBDWGIswY_q44JYrjBHaHPH92PqtOUNqgsKnDP2MvqiDLc94jR48pczdMUISUfxjq4-vzqDNfKZH_r87bW2_rODzZvJ6inltYmgsqQalXbWIhxXbsQDez2_f8QUmqCa64hQwz323VIxeZV9cKpIcHpw3lS_Tj78n113lx--3qx-nzZGI54bjQmVmvjHNXWUe6cI5y2yHLCrRAtxwKsBQOu5Z222ipwxLqWUdQLQxSnJ9XF4muD2sgp-hsVtzIoL_cPIa6litmbAaS1DjQWCDthGCJWgEK8F0Jp5KBtu-L1afGaZn0D1sCYoxqemD79Gf21XIdb2RNGUE-LwbsHgxh-zpCyvPHJwDCoEcKcJGkZFz3CtC3o27_QTZjjWEa1p6joGN11RxbKxDLlCO5QDEZyFwm5REKWSMh9JCQuojeP2zhIfgegAP0C3IEOLhkPo4EDVjLDO9y1lOziw1Y-q1yCsgrzmIv0_f9LC00XOhViXEP80-Q_6v8FuujjyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546397436</pqid></control><display><type>article</type><title>Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Isermann, Tamara ; Şener, Özge Çiçek ; Stender, Adrian ; Klemke, Luisa ; Winkler, Nadine ; Neesse, Albrecht ; Li, Jinyu ; Wegwitz, Florian ; Moll, Ute M. ; Schulz-Heddergott, Ramona</creator><creatorcontrib>Isermann, Tamara ; Şener, Özge Çiçek ; Stender, Adrian ; Klemke, Luisa ; Winkler, Nadine ; Neesse, Albrecht ; Li, Jinyu ; Wegwitz, Florian ; Moll, Ute M. ; Schulz-Heddergott, Ramona</creatorcontrib><description>The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53 R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A /p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53 R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion. Most mutant p53 heterozygous tumours undergo loss of the remaining wildtype (WT) p53 allele which leads to stabilization of the mutant p53 protein. Here, the authors show in an autochthonous colorectal cancer model that the WT p53 allele retains partial activity and suppresses the heat shock factor 1 (HSF1)- chaperone axis to prevent mutant p53 stabilisation and mutant p53 gain-of-function activities, thereby creating selective pressure for p53 loss-of-heterozygosity.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24064-1</identifier><identifier>PMID: 34188043</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/106 ; 13/51 ; 13/89 ; 13/95 ; 14/63 ; 631/67/1504/1885 ; 631/80/304 ; 631/80/86/2366 ; 64 ; 64/60 ; 82/80 ; Alleles ; Animals ; Cancer ; Cell cycle ; Cell Cycle Checkpoints - genetics ; Cell Line, Tumor ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - pathology ; Cyclin-Dependent Kinase Inhibitor p21 - metabolism ; E2F protein ; HCT116 Cells ; Heat shock ; Heat shock factors ; Heat Shock Transcription Factors - metabolism ; HEK293 Cells ; Heterozygosity ; HSF1 protein ; Humanities and Social Sciences ; Humans ; Loss of Heterozygosity - genetics ; MAP kinase ; MAP kinase kinase ; MAP Kinase Kinase Kinases - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitogen-Activated Protein Kinase Kinase Kinase 11 ; multidisciplinary ; Multidisciplinary Sciences ; Mutants ; Mutation ; Mutation - genetics ; Organoids ; p53 Protein ; Proteins ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary) ; Stabilization ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors</subject><ispartof>Nature communications, 2021-06, Vol.12 (1), p.4019-4019, Article 4019</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000671753200004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-b12dbbcff3bdf36fff26350d626d995619eddecef567bdbdaef2df543089c2a63</citedby><cites>FETCH-LOGICAL-c606t-b12dbbcff3bdf36fff26350d626d995619eddecef567bdbdaef2df543089c2a63</cites><orcidid>0000-0002-1866-0221 ; 0000-0002-6483-4392 ; 0000-0002-4361-3312 ; 0000-0003-0368-8771 ; 0000-0003-0750-6998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242083/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242083/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2118,27933,27934,39267,41129,42198,51585,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34188043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isermann, Tamara</creatorcontrib><creatorcontrib>Şener, Özge Çiçek</creatorcontrib><creatorcontrib>Stender, Adrian</creatorcontrib><creatorcontrib>Klemke, Luisa</creatorcontrib><creatorcontrib>Winkler, Nadine</creatorcontrib><creatorcontrib>Neesse, Albrecht</creatorcontrib><creatorcontrib>Li, Jinyu</creatorcontrib><creatorcontrib>Wegwitz, Florian</creatorcontrib><creatorcontrib>Moll, Ute M.</creatorcontrib><creatorcontrib>Schulz-Heddergott, Ramona</creatorcontrib><title>Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53 R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A /p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53 R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion. Most mutant p53 heterozygous tumours undergo loss of the remaining wildtype (WT) p53 allele which leads to stabilization of the mutant p53 protein. Here, the authors show in an autochthonous colorectal cancer model that the WT p53 allele retains partial activity and suppresses the heat shock factor 1 (HSF1)- chaperone axis to prevent mutant p53 stabilisation and mutant p53 gain-of-function activities, thereby creating selective pressure for p53 loss-of-heterozygosity.</description><subject>13</subject><subject>13/1</subject><subject>13/106</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/63</subject><subject>631/67/1504/1885</subject><subject>631/80/304</subject><subject>631/80/86/2366</subject><subject>64</subject><subject>64/60</subject><subject>82/80</subject><subject>Alleles</subject><subject>Animals</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Cell Line, Tumor</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</subject><subject>E2F protein</subject><subject>HCT116 Cells</subject><subject>Heat shock</subject><subject>Heat shock factors</subject><subject>Heat Shock Transcription Factors - metabolism</subject><subject>HEK293 Cells</subject><subject>Heterozygosity</subject><subject>HSF1 protein</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Loss of Heterozygosity - genetics</subject><subject>MAP kinase</subject><subject>MAP kinase kinase</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitogen-Activated Protein Kinase Kinase Kinase 11</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Organoids</subject><subject>p53 Protein</subject><subject>Proteins</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Stabilization</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1rFTEUhgdRbKn9Ay5kwI0go_mazGQjyMXaQsFFdR3ycXKby3QyJpmW219v7p16bV2IWSQhed6Xcw5vVb3G6ANGtP-YGGa8axDBDWGIswY_q44JYrjBHaHPH92PqtOUNqgsKnDP2MvqiDLc94jR48pczdMUISUfxjq4-vzqDNfKZH_r87bW2_rODzZvJ6inltYmgsqQalXbWIhxXbsQDez2_f8QUmqCa64hQwz323VIxeZV9cKpIcHpw3lS_Tj78n113lx--3qx-nzZGI54bjQmVmvjHNXWUe6cI5y2yHLCrRAtxwKsBQOu5Z222ipwxLqWUdQLQxSnJ9XF4muD2sgp-hsVtzIoL_cPIa6litmbAaS1DjQWCDthGCJWgEK8F0Jp5KBtu-L1afGaZn0D1sCYoxqemD79Gf21XIdb2RNGUE-LwbsHgxh-zpCyvPHJwDCoEcKcJGkZFz3CtC3o27_QTZjjWEa1p6joGN11RxbKxDLlCO5QDEZyFwm5REKWSMh9JCQuojeP2zhIfgegAP0C3IEOLhkPo4EDVjLDO9y1lOziw1Y-q1yCsgrzmIv0_f9LC00XOhViXEP80-Q_6v8FuujjyA</recordid><startdate>20210629</startdate><enddate>20210629</enddate><creator>Isermann, Tamara</creator><creator>Şener, Özge Çiçek</creator><creator>Stender, Adrian</creator><creator>Klemke, Luisa</creator><creator>Winkler, Nadine</creator><creator>Neesse, Albrecht</creator><creator>Li, Jinyu</creator><creator>Wegwitz, Florian</creator><creator>Moll, Ute M.</creator><creator>Schulz-Heddergott, Ramona</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1866-0221</orcidid><orcidid>https://orcid.org/0000-0002-6483-4392</orcidid><orcidid>https://orcid.org/0000-0002-4361-3312</orcidid><orcidid>https://orcid.org/0000-0003-0368-8771</orcidid><orcidid>https://orcid.org/0000-0003-0750-6998</orcidid></search><sort><creationdate>20210629</creationdate><title>Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity</title><author>Isermann, Tamara ; Şener, Özge Çiçek ; Stender, Adrian ; Klemke, Luisa ; Winkler, Nadine ; Neesse, Albrecht ; Li, Jinyu ; Wegwitz, Florian ; Moll, Ute M. ; Schulz-Heddergott, Ramona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-b12dbbcff3bdf36fff26350d626d995619eddecef567bdbdaef2df543089c2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>13/1</topic><topic>13/106</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/63</topic><topic>631/67/1504/1885</topic><topic>631/80/304</topic><topic>631/80/86/2366</topic><topic>64</topic><topic>64/60</topic><topic>82/80</topic><topic>Alleles</topic><topic>Animals</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Cell Line, Tumor</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Cyclin-Dependent Kinase Inhibitor p21 - metabolism</topic><topic>E2F protein</topic><topic>HCT116 Cells</topic><topic>Heat shock</topic><topic>Heat shock factors</topic><topic>Heat Shock Transcription Factors - metabolism</topic><topic>HEK293 Cells</topic><topic>Heterozygosity</topic><topic>HSF1 protein</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Loss of Heterozygosity - genetics</topic><topic>MAP kinase</topic><topic>MAP kinase kinase</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitogen-Activated Protein Kinase Kinase Kinase 11</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Organoids</topic><topic>p53 Protein</topic><topic>Proteins</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Stabilization</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isermann, Tamara</creatorcontrib><creatorcontrib>Şener, Özge Çiçek</creatorcontrib><creatorcontrib>Stender, Adrian</creatorcontrib><creatorcontrib>Klemke, Luisa</creatorcontrib><creatorcontrib>Winkler, Nadine</creatorcontrib><creatorcontrib>Neesse, Albrecht</creatorcontrib><creatorcontrib>Li, Jinyu</creatorcontrib><creatorcontrib>Wegwitz, Florian</creatorcontrib><creatorcontrib>Moll, Ute M.</creatorcontrib><creatorcontrib>Schulz-Heddergott, Ramona</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isermann, Tamara</au><au>Şener, Özge Çiçek</au><au>Stender, Adrian</au><au>Klemke, Luisa</au><au>Winkler, Nadine</au><au>Neesse, Albrecht</au><au>Li, Jinyu</au><au>Wegwitz, Florian</au><au>Moll, Ute M.</au><au>Schulz-Heddergott, Ramona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2021-06-29</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4019</spage><epage>4019</epage><pages>4019-4019</pages><artnum>4019</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53 R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A /p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53 R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion. Most mutant p53 heterozygous tumours undergo loss of the remaining wildtype (WT) p53 allele which leads to stabilization of the mutant p53 protein. Here, the authors show in an autochthonous colorectal cancer model that the WT p53 allele retains partial activity and suppresses the heat shock factor 1 (HSF1)- chaperone axis to prevent mutant p53 stabilisation and mutant p53 gain-of-function activities, thereby creating selective pressure for p53 loss-of-heterozygosity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34188043</pmid><doi>10.1038/s41467-021-24064-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1866-0221</orcidid><orcidid>https://orcid.org/0000-0002-6483-4392</orcidid><orcidid>https://orcid.org/0000-0002-4361-3312</orcidid><orcidid>https://orcid.org/0000-0003-0368-8771</orcidid><orcidid>https://orcid.org/0000-0003-0750-6998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2021-06, Vol.12 (1), p.4019-4019, Article 4019
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmed_primary_34188043
source MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects 13
13/1
13/106
13/51
13/89
13/95
14/63
631/67/1504/1885
631/80/304
631/80/86/2366
64
64/60
82/80
Alleles
Animals
Cancer
Cell cycle
Cell Cycle Checkpoints - genetics
Cell Line, Tumor
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
E2F protein
HCT116 Cells
Heat shock
Heat shock factors
Heat Shock Transcription Factors - metabolism
HEK293 Cells
Heterozygosity
HSF1 protein
Humanities and Social Sciences
Humans
Loss of Heterozygosity - genetics
MAP kinase
MAP kinase kinase
MAP Kinase Kinase Kinases - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Mitogen-Activated Protein Kinase Kinase Kinase 11
multidisciplinary
Multidisciplinary Sciences
Mutants
Mutation
Mutation - genetics
Organoids
p53 Protein
Proteins
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
Stabilization
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumors
title Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T05%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20HSF1%20activity%20by%20wildtype%20p53%20creates%20a%20driving%20force%20for%20p53%20loss-of-heterozygosity&rft.jtitle=Nature%20communications&rft.au=Isermann,%20Tamara&rft.date=2021-06-29&rft.volume=12&rft.issue=1&rft.spage=4019&rft.epage=4019&rft.pages=4019-4019&rft.artnum=4019&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24064-1&rft_dat=%3Cproquest_pubme%3E2546980135%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546397436&rft_id=info:pmid/34188043&rft_doaj_id=oai_doaj_org_article_ddfeb1901f9c402d9ea06899ab0fe557&rfr_iscdi=true