Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity

The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-06, Vol.12 (1), p.4019-4019, Article 4019
Hauptverfasser: Isermann, Tamara, Şener, Özge Çiçek, Stender, Adrian, Klemke, Luisa, Winkler, Nadine, Neesse, Albrecht, Li, Jinyu, Wegwitz, Florian, Moll, Ute M., Schulz-Heddergott, Ramona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53–HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53 R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A /p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53 R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion. Most mutant p53 heterozygous tumours undergo loss of the remaining wildtype (WT) p53 allele which leads to stabilization of the mutant p53 protein. Here, the authors show in an autochthonous colorectal cancer model that the WT p53 allele retains partial activity and suppresses the heat shock factor 1 (HSF1)- chaperone axis to prevent mutant p53 stabilisation and mutant p53 gain-of-function activities, thereby creating selective pressure for p53 loss-of-heterozygosity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24064-1