Vibrational circular dichroism spectroscopy for probing the expression of chirality in mechanically planar chiral rotaxanes

Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-07, Vol.11 (32), p.8469-8475
Hauptverfasser: Koenis, Mark A. J, Chibueze, C. S, Jinks, M. A, Nicu, Valentin P, Visscher, Lucas, Goldup, S. M, Buma, Wybren J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanically interlocked molecules can exhibit molecular chirality that arises due to the mechanical bond rather than covalent stereogenic units. Developing applications of such systems is made challenging by the absence of techniques for assigning the absolute configuration of products and methods to probe how the mechanical stereogenic unit influences the spatial arrangements of the functional groups in solution. Here we demonstrate for the first time that Vibrational Circular Dichroism (VCD) can be used to not only discriminate between mechanical stereoisomers but also provide detailed information on their (co)conformations. The latter is particularly important as these molecules are now under investigation in catalysis and sensing, both of which rely on the solution phase shape of the interlocked structure. Detailed analysis of the VCD spectra shows that, although many of the signals arise from coupled oscillators isolated in the covalent sub-components, intercomponent coupling between the macrocycle and axle gives rise to several VCD bands. Through the looking glass: VCD spectroscopy provides unique insight into how a chiral mechanical bond imposes shape on rotaxanes in solution and allows their absolute configuration to be determined.
ISSN:2041-6520
2041-6539
DOI:10.1039/d0sc02485f