Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr 0.8 Y 0.2 O 3- δ Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell
This paper reports an extended Nernst-Planck computational model that couples charged-defect transport and stress in tubular electrochemical cell with a ceramic proton-conducting membrane. The model is particularly concerned with coupled chemo-mechanical behaviors, including how electrochemical phen...
Gespeichert in:
Veröffentlicht in: | Membranes (Basel) 2021-05, Vol.11 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports an extended Nernst-Planck computational model that couples charged-defect transport and stress in tubular electrochemical cell with a ceramic proton-conducting membrane. The model is particularly concerned with coupled chemo-mechanical behaviors, including how electrochemical phenomena affect internal stresses and vice versa. The computational model predicts transient and steady-state defect concentrations, fluxes, stresses within a thin BaZr
Y
O
(BZY20) membrane. Depending on the polarization (i.e., imposed current density), the model predicts performance as a fuel cell or an electrolyzer. A sensitivity analysis reveals the importance of thermodynamic and transport properties, which are often not readily available. |
---|---|
ISSN: | 2077-0375 2077-0375 |