Validation of a mammographic image quality modification algorithm using 3D-printed breast phantoms

Purpose: To validate a previously proposed algorithm that modifies a mammogram to appear as if it was acquired with different technique factors using realistic phantom-based mammograms. Approach: Two digital mammography systems (an indirect- and a direct-detector-based system) were used to acquire r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical imaging (Bellingham, Wash.) Wash.), 2021-05, Vol.8 (3), p.033502-033502
Hauptverfasser: Boita, Joana, Mackenzie, Alistair, van Engen, Ruben E, Broeders, Mireille, Sechopoulos, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: To validate a previously proposed algorithm that modifies a mammogram to appear as if it was acquired with different technique factors using realistic phantom-based mammograms. Approach: Two digital mammography systems (an indirect- and a direct-detector-based system) were used to acquire realistic mammographic images of five 3D-printed breast phantoms with the technique factors selected by the automatic exposure control and at various other conditions (denoted by the original images). Additional images under other simulated conditions were also acquired: higher or lower tube voltages, different anode/filter combinations, or lower tube current–time products (target images). The signal and noise in the original images were modified to simulate the target images (simulated images). The accuracy of the image modification algorithm was validated by comparing the target and simulated images using the local mean, local standard deviation (SD), local variance, and power spectra (PS) of the image signals. The absolute relative percent error between the target and simulated images for each parameter was calculated at each sub-region of interest (local parameters) and frequency (PS), and then averaged. Results: The local mean signal, local SD, local variance, and PS of the target and simulated images were very similar, with a relative percent error of 5.5%, 3.8%, 7.8%, and 4.4% (indirect system), respectively, and of 3.7%, 3.8%, 7.7%, and 7.5% (direct system), respectively. Conclusions: The algorithm is appropriate for simulating different technique factors. Therefore, it can be used in various studies, for instance to evaluate the impact of technique factors in cancer detection using clinical images.
ISSN:2329-4302
2329-4310
DOI:10.1117/1.JMI.8.3.033502