Fp roi -GAN with Fused Regional Features for the Synthesis of High-Quality Paired Medical Images

The use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. The structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the region of interest (ROI) of the synthesize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2021, Vol.2021, p.6678031
Hauptverfasser: Dong, Jiale, Liu, Caiwei, Man, Panpan, Zhao, Guohua, Wu, Yaping, Lin, Yusong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. The structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the region of interest (ROI) of the synthesized image is related to its usability, and these parameters are the two key issues in image synthesis. In this paper, the fusion-ROI patch GAN (Fp -GAN) model was constructed by incorporating a priori regional feature based on the two-stage cycle consistency mechanism of cycleGAN. This model has improved the tissue contrast of ROI and achieved the pairwise synthesis of high-quality medical images and their corresponding ROIs. The quantitative evaluation results in two publicly available datasets, INbreast and BRATS 2017, show that the synthesized ROI images have a DICE coefficient of 0.981 ± 0.11 and a Hausdorff distance of 4.21 ± 2.84 relative to the original images. The classification experimental results show that the synthesized images can effectively assist in the training of machine learning models, improve the generalization performance of prediction models, and improve the classification accuracy by 4% and sensitivity by 5.3% compared with the cycleGAN method. Hence, the paired medical images synthesized using Fp -GAN have high quality and structural consistency with real medical images.
ISSN:2040-2309