Medium compensation in a spring-actuated system
Mantis shrimp strikes are one of the fastest animal movements, despite their occurrence in a water medium with viscous drag. Since the strike is produced by a latch-mediated spring-actuated system and not directly driven by muscle action, we predicted that strikes performed in air would be faster th...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2020-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mantis shrimp strikes are one of the fastest animal movements, despite their occurrence in a water medium with viscous drag. Since the strike is produced by a latch-mediated spring-actuated system and not directly driven by muscle action, we predicted that strikes performed in air would be faster than underwater due to reduction in the medium's drag. Using high-speed video analysis of stereotyped strikes elicited from Squilla mantis, we found the exact opposite: strikes are much slower and less powerful in air than in water. S. mantis strikes in air have a similar mass and performance to latch-mediated spring-actuated jumps in locusts, suggesting a potential threshold for the energetics of a 1-2 g limb rotating in air. Drag forces induced by the media may be a key feature in the evolution of mantis shrimp strikes and provide a potential target for probing the braking system of these extremely fast movements. |
---|---|
ISSN: | 1477-9145 |