The C-terminal helix of BubR1 is essential for CENP-E-dependent chromosome alignment

During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores, to facilitate chromosome alignment. The spindle checkpoint protein BubR1 has been reported as a CENP-E interacting partner, but to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2020-01
Hauptverfasser: Legal, Thibault, Hayward, Daniel, Gluszek-Kustusz, Agata, Blackburn, Elizabeth A, Spanos, Christos, Rappsilber, Juri, Gruneberg, Ulrike, Welburn, Julie P I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During cell division, misaligned chromosomes are captured and aligned by motors before their segregation. The CENP-E motor is recruited to polar unattached kinetochores, to facilitate chromosome alignment. The spindle checkpoint protein BubR1 has been reported as a CENP-E interacting partner, but to what extent BubR1 contributes to CENP-E localization at kinetochores, has remained controversial. Here we define the molecular determinants that specify the interaction between BubR1 and CENP-E. The basic C-terminal helix of BubR1 is necessary but not sufficient for CENP-E interaction, while a minimal key acidic patch on the kinetochore-targeting domain of CENP-E, is also essential. We then demonstrate that BubR1 is required for the recruitment of CENP-E to kinetochores to facilitate chromosome alignment. This BubR1-CENP-E axis is critical to align chromosomes that have failed to congress through other pathways and recapitulates the major known function of CENP-E. Overall, our studies define the molecular basis and the function for CENP-E recruitment to BubR1 at kinetochores during mammalian mitosis.
ISSN:1477-9137