A heterodimeric SNX4:SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly
The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a sub-group of SNXs in selective and non-selective forms of (macro)autophagy. Using siRNA and CRISP...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2020-01 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a sub-group of SNXs in selective and non-selective forms of (macro)autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein, SNX4, is needed for efficient LC3 lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and heterodimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveal that SNX4:SNX7 is the autophagy-specific SNX-BAR heterodimer, required for efficient recruitment/retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially co-localises with juxtanuclear ATG9A-positive membranes, with our data linking the SNX4 autophagy defect to the mis-trafficking and/or retention of ATG9A in the Golgi region. Together, our findings show that the SNX4:SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy. |
---|---|
ISSN: | 1477-9137 |