Microwave-assisted assembly of Ag 2 O-ZnO composite nanocones for electrochemical detection of 4-Nitrophenol and assessment of their photocatalytic activity towards degradation of 4-Nitrophenol and Methylene blue dye
4-Nitrophenol (4-NP) is an extensively utilized industrial chemical and one of major toxic water pollutant. Therefore, there is an urgent need to monitor the levels of 4-NP from environmental samples as well as its eradication are extremely important. Keeping this as a motivation, this research for...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-03, Vol.416, p.125771 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 4-Nitrophenol (4-NP) is an extensively utilized industrial chemical and one of major toxic water pollutant. Therefore, there is an urgent need to monitor the levels of 4-NP from environmental samples as well as its eradication are extremely important. Keeping this as a motivation, this research for the first-time reports microwave-assisted cost-effective synthesis of silver oxide (Ag
O)-zinc oxide (ZnO) composite nanocones (CNCs, 80-100 nm) for simultaneous electrochemical detection and photodegradation of 4-NP from aqueous solutions. The Ag
O-ZnO CNCs modified gold electrode was fabricated for electrochemical detection of 4-NP. Such fabricated sensor exhibited a sensitivity of 1.6 µA µM
cm
, wide linear detection range of 0.4-26 µM & 28-326 µM, and a low limit of detection of 23 nM. The sensor also exhibited good selectivity in real water samples. Also, an outstanding photocatalytic performance of Ag
O-ZnO CNCs was evaluated towards UV-assisted degradation of 4-NP and organic water pollutant dye, methylene blue. The Ag
O-ZnO CNCs exhibited excellent electro- and photocatalytic activities due to the formation of p-n nano-heterojunction comprising of p-type Ag
O and n-type ZnO semiconductor nanoparticles within the composite. Therefore, herein reported smart CNCs can be projected as applied nano-system for cost-effective and rapid simultaneous detection and removal of 4-NP from aqueous solutions. Such nano-system can be useful for industrial application where detection and removal of 4-NP is a key issue to resolve. |
---|---|
ISSN: | 1873-3336 |