Properties of degradable polyhydroxyalkanoates with different monomer compositions
To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them. Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2021-07, Vol.182, p.98-114 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To synthesize and investigate polyhydroxyalkanoates (PHAs) with different monomer composition and percentages and polymer films prepared from them.
Various PHAs: homopolymer poly-3-hydroxybutyrate P(3HB) and 2-, 3-, and 4-component copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), and 3-hydroxyhexanoate (3HHx) monomers were synthesized under specialized conditions. Relationships were found between the monomer composition of PHAs and their molecular-weight and thermal properties and degree of crystallinity. All copolymers had decreased weight average molecular weights, Mw (to 390–600 kDa), and increased values of polydispersity (3.2–4.6) compared to the P(3HB). PHA copolymers showed different thermal behavior: an insignificant decrease in Tmelt and the presence of the second peak in the melting region and changes in parameters of crystallization and glass transition. At the same time, they retained thermostability, and the difference between Tmelt and Tdegr was at least 100–120 °C. Incorporation of 4HB, 3HV, and 3HHx monomer units into the 3-hydroxybutyrate chain caused changes in the amorphous to crystalline ratio and decreased the degree of crystallinity (Cx) to 20–40%. According to the degree to which the monomers reduced crystallinity, they were ranked as follows: 4HB – 3HHx – 3HV. A unique set of films was produced; their surface properties and physical/mechanical properties were studied as dependent on PHA composition; monomers other than 3-hydroxybutyrate were found to enhance hydrophilicity, surface development, and elasticity of polymer films.
An innovative set of PHA copolymers was synthesized and solution-cast films were prepared from them; the copolymers and films were investigated as dependent on polymer chemical composition. Results obtained in the present study contribute to the solution of a critical issue of producing degradable polymer materials.
•Chemical composition of PHA bi-, ter-, and quarter polymers with different monomer compositions.•The effect of monomer composition on the physicochemical properties of PHAs.•Surface microstructure and properties of films prepared from PHAs with different compositions. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2021.04.008 |