Quantum computation of dominant products in lithium–sulfur batteries

Quantum chemistry simulations of some industrially relevant molecules are reported, employing variational quantum algorithms for near-term quantum devices. The energies and dipole moments are calculated along the dissociation curves for lithium hydride (LiH), hydrogen sulfide, lithium hydrogen sulfi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-04, Vol.154 (13), p.134115-134115
Hauptverfasser: Rice, Julia E., Gujarati, Tanvi P., Motta, Mario, Takeshita, Tyler Y., Lee, Eunseok, Latone, Joseph A., Garcia, Jeannette M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum chemistry simulations of some industrially relevant molecules are reported, employing variational quantum algorithms for near-term quantum devices. The energies and dipole moments are calculated along the dissociation curves for lithium hydride (LiH), hydrogen sulfide, lithium hydrogen sulfide, and lithium sulfide. In all cases, we focus on the breaking of a single bond to obtain information about the stability of the molecular species being investigated. We calculate energies and a variety of electrostatic properties of these molecules using classical simulators of quantum devices, with up to 21 qubits for lithium sulfide. Moreover, we calculate the ground-state energy and dipole moment along the dissociation pathway of LiH using IBM quantum devices. This is the first example, to the best of our knowledge, of dipole moment calculations being performed on quantum hardware.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0044068