Finite-Time Synchronization of Markovian Coupled Neural Networks With Delays via Intermittent Quantized Control: Linear Programming Approach

This article is devoted to investigating finite-time synchronization (FTS) for coupled neural networks (CNNs) with time-varying delays and Markovian jumping topologies by using an intermittent quantized controller. Due to the intermittent property, it is very hard to surmount the effects of time del...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2022-10, Vol.33 (10), p.5268-5278
Hauptverfasser: Tang, Rongqiang, Su, Housheng, Zou, Yi, Yang, Xinsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article is devoted to investigating finite-time synchronization (FTS) for coupled neural networks (CNNs) with time-varying delays and Markovian jumping topologies by using an intermittent quantized controller. Due to the intermittent property, it is very hard to surmount the effects of time delays and ascertain the settling time. A new lemma with novel finite-time stability inequality is developed first. Then, by constructing a new Lyapunov functional and utilizing linear programming (LP) method, several sufficient conditions are obtained to assure that the Markovian CNNs achieve synchronization with an isolated node in a settling time that relies on the initial values of considered systems, the width of control and rest intervals, and the time delays. The control gains are designed by solving the LP. Moreover, an optimal algorithm is given to enhance the accuracy in estimating the settling time. Finally, a numerical example is provided to show the merits and correctness of the theoretical analysis.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2021.3069926