Infiltrated thin film structure with hydrogel-mediated precursor ink for durable SOFCs

The hydrogel of biomolecule-assisted metal/organic complex has the superior ability to form a uniform, continuous, and densely integrated structure, which is necessary for fine thin film fabrication. As a representative of nature-originated polymers with abundant reactive side chains, we select the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-03, Vol.11 (1), p.7109-7109, Article 7109
Hauptverfasser: Hwang, Sangyeon, Choi, Mingi, Lee, Jongseo, Kang, Giho, Kim, Seo Ju, Seong, Baekhoon, Lee, Hyungdong, Lee, Wonyoung, Byun, Doyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydrogel of biomolecule-assisted metal/organic complex has the superior ability to form a uniform, continuous, and densely integrated structure, which is necessary for fine thin film fabrication. As a representative of nature-originated polymers with abundant reactive side chains, we select the gelatin molecule as an element for weaving the metal cations. Here, we demonstrate the interaction between the metal cation and gelatin molecules, and associate it with coating quality. We investigate the rheological property of gelatin solutions interacting with metal cation from the view of cross-linking and denaturing of gelatin molecules. Also, we quantitatively compare the corresponding interactions by monitoring the absorbance spectrum of the cation. The coated porous structure is systematically investigated from the infiltration of gelatin-mediated Gd 0.2 Ce 0.8 O 2−δ (GDC) precursor into Sm 0.5 Sr 0.5 CoO 3−δ (SSC) porous scaffold. By applying the actively interacting gelatin–GDC system, we achieve a thin film of GDC on SSC with excellent uniformity. Compare to the discrete coating from the typical infiltration process, the optimized thin film coated structure shows enhanced performance and stability.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-86572-w