Exposure to artificial light at night accelerates but does not override latitude-dependent seasonal reproductive response in a North American songbird

In the modern era of industrialization, illuminated nights have become a common defining feature of human-occupied environments, particularly cities. Artificial light at night (ALAN) imposes several known negative impacts on the neuroendocrine system, metabolism, and seasonal reproduction of species...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2021-06, Vol.279, p.116867-116867, Article 116867
Hauptverfasser: Singh, D., Montoure, J., Ketterson, E.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the modern era of industrialization, illuminated nights have become a common defining feature of human-occupied environments, particularly cities. Artificial light at night (ALAN) imposes several known negative impacts on the neuroendocrine system, metabolism, and seasonal reproduction of species living in the wild. However, we know little about the impact of ALAN on populations of birds that either live year-round in the same location or move to different latitudes across seasons. To test whether ALAN has a differing impact on the reproductive timing of bird populations that winter in sympatry but breed at different latitudes, we monitored sedentary and migratory male dark-eyed juncos that were or were not exposed to low intensity (∼2.5 ± 0.5 lux) ALAN. All groups were held in common conditions and day length was gradually increased to mimic natural day length changes (NDL). We assessed seasonal reproductive response from initiation to termination of the breeding cycle. As expected based on earlier research, the sedentary birds exhibited earlier gonadal recrudescence and terminated breeding later than the migratory birds. In addition, resident and migrant birds exposed to ALAN initiated gonadal recrudescence earlier and terminated reproductive events sooner as compared to their conspecifics experiencing NDL. Importantly, the difference in the reproductive timing of sedentary and migratory populations was maintained even when exposed to ALAN. This variation in the seasonal reproductive timing may likely have a genetic basis or be the result of early developmental effects imposed due to different light regimes related to the latitude of origin. This study reveals first that ALAN accelerated reproductive development across both migrants and residents and second that latitude-dependent variation in reproductive timing is maintained despite exposure to ALAN. These results corroborate a relationship between latitude, population, and reproductive timing while also revealing ALAN’s impact on seasonal reproductive timing. This study reveals that, ALAN accelerated reproductive development but maintained latitude-dependent variation in reproductive timing across both migrant and resident bird populations. [Display omitted] •Dark-eyed junco populations differ in the seasonal timing of reproduction.•Artificial light at night (ALAN) affected natural day length (NDL) gonad response.•ALAN accelerated reproductive development across both migrants and residents.•ALAN ad
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2021.116867