Inhibition of MTA2 and MTA3 induces mesendoderm specification of human embryonic stem cells
Fully understanding the regulatory network under the pluripotency of embryonic stem cells (ESC) is a prerequisite for their safe application. Here, we addressed the characteristics of metastasis-associated (MTA) family members in human ESCs and found that knockdown of the expression of MTA2 and MTA3...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2021-05, Vol.552, p.142-149 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fully understanding the regulatory network under the pluripotency of embryonic stem cells (ESC) is a prerequisite for their safe application. Here, we addressed the characteristics of metastasis-associated (MTA) family members in human ESCs and found that knockdown of the expression of MTA2 and MTA3, but not MTA1, would induce differentiation. High-throughput sequence and quantitative real-time PCR showed that the decreased MTA2 or MTA3 gene transcript mainly led to the emergence of mesendoderm associated markers. Finally, based on the chemical small molecule library screening, we observed that addition of ID8, a specific inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), was able to impair the differentiation phenotype induced by MTA2 and MTA3 reduction. Functional assay showed that ID8 could mediate differentiation caused by MTA2 or MTA3 knockdown mainly through inhibition of DYRK4 activity. Therefore, our finding provides the evidence that the functions of MTA family genes in human ESCs are different. Revealing the function of MTA in ESCs with different pluripotency states will help us better understand and apply stem cells.
•MTA2 and MTA3 are essential for hESC maintenance•Suppression of MTA2 and MTA3 directs hESCs differentiation into endoderm and mesoderm cells.•Addition of ID8 can rescue the differentiation phenotype induced by MTA2 or MTA3 downregulation.•ID8 functions in MTA2 and MTA3 knockdown hESCs mainly through inhibition of DYRK4 |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2021.03.030 |