Wide-range direct detection of 25-hydroxyvitamin D 3 using polyethylene-glycol-free gold nanorod based on LSPR aptasensor

Vitamin D is associated with various diseases such as obesity, digestive problems, osteoporosis, depression, and infections, which has emerged as an interest in public healthcare. Recently, vitamin D has received more attention because of the potential implication with coronavirus disease 2019. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2021-06, Vol.181, p.113118
Hauptverfasser: Jo, Seongjae, Lee, Wonseok, Park, Joohyung, Park, Hyunjun, Kim, Minwoo, Kim, Woochang, Hong, Junghwa, Park, Jinsung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitamin D is associated with various diseases such as obesity, digestive problems, osteoporosis, depression, and infections, which has emerged as an interest in public healthcare. Recently, vitamin D has received more attention because of the potential implication with coronavirus disease 2019. In this study, we developed a localized surface plasmon resonance (LSPR) aptasensor based on polyethylene-glycol(PEG)-free gold nanorods (AuNRs) for the wide-range and direct detection of 25-hydroxyvitamin D . The surfactant on AuNRs was removed by exchanging with polystyrene sulfonate (PSS) instead of PEG then the PSS was exchanged with citrate. By exchanging the stabilizer of AuNRs from PEG to PEG-free (i.e., citrate), the sensing efficiency of LSPR aptasensor was significantly improved. Additionally, LSPR aptasensor was functionalized with aptamer and blocking agent to enhance the sensing performance. The LSPR aptasensor achieved the direct, highly sensitive, and selective detection of 25-hydroxyvitamin D over a wide concentration range (0.1-10  ng/mL), with a limit of detection of 0.1 ng/mL. This detection range included the concentration of vitamin D from deficiency to excess. The PEG-free AuNR-based LSPR aptasensor affords a new avenue for the development of robust sensing technology for vitamins.
ISSN:1873-4235
DOI:10.1016/j.bios.2021.113118