High-temperature high-pressure microfluidic system for rapid screening of supercritical CO 2 foaming agents
CO foam helps to increase the viscosity of CO flood fluid and thus improve the process efficiency of the anthropogenic greenhouse gas's subsurface utilization and sequestration. Successful CO foam formation mandates the development of high-performance chemicals at close to reservoir conditions,...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-02, Vol.11 (1), p.3360 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CO
foam helps to increase the viscosity of CO
flood fluid and thus improve the process efficiency of the anthropogenic greenhouse gas's subsurface utilization and sequestration. Successful CO
foam formation mandates the development of high-performance chemicals at close to reservoir conditions, which in turn requires extensive laboratory tests and evaluations. This work demonstrates the utilization of a microfluidic reservoir analogue for rapid evaluation and screening of commercial surfactants (i.e., Cocamidopropyl Hydroxysultaine, Lauramidopropyl Betaine, Tallow Amine Ethoxylate, N,N,N' Trimethyl-N'-Tallow-1,3-diaminopropane, and Sodium Alpha Olefin Sulfonate) based on their performance to produce supercritical CO
foam at high salinity, temperature, and pressure conditions. The microfluidic analogue was designed to represent the pore sizes of the geologic reservoir rock and to operate at 100 °C and 13.8 MPa. Values of the pressure drop across the microfluidic analogue during flow of the CO
foam through its pore network was used to evaluate the strength of the generated foam and utilized only milliliters of liquid. The transparent microfluidic pore network allows in-situ quantitative visualization of CO
foam to calculate its half-life under static conditions while observing if there is any damage to the pore network due to precipitation and blockage. The microfluidic mobility reduction results agree with those of foam loop rheometer measurements, however, the microfluidic approach provided more accurate foam stability data to differentiate the foaming agent as compared with conventional balk testing. The results obtained here supports the utility of microfluidic systems for rapid screening of chemicals for carbon sequestration or enhanced oil recovery operations. |
---|---|
ISSN: | 2045-2322 |