Integrating quantitative proteomics with accurate genome profiling of transcription factors by greenCUT&RUN
Abstract Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method ‘greenCUT&RUN’ for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibili...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2021-05, Vol.49 (9), p.e49-e49 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Genome-wide localization of chromatin and transcription regulators can be detected by a variety of techniques. Here, we describe a novel method ‘greenCUT&RUN’ for genome-wide profiling of transcription regulators, which has a very high sensitivity, resolution, accuracy and reproducibility, whilst assuring specificity. Our strategy begins with tagging of the protein of interest with GFP and utilizes a GFP-specific nanobody fused to MNase to profile genome-wide binding events. By using a GFP-nanobody the greenCUT&RUN approach eliminates antibody dependency and variability. Robust genomic profiles were obtained with greenCUT&RUN, which are accurate and unbiased towards open chromatin. By integrating greenCUT&RUN with nanobody-based affinity purification mass spectrometry, ‘piggy-back’ DNA binding events can be identified on a genomic scale. The unique design of greenCUT&RUN grants target protein flexibility and yields high resolution footprints. In addition, greenCUT&RUN allows rapid profiling of mutants of chromatin and transcription proteins. In conclusion, greenCUT&RUN is a widely applicable and versatile genome-mapping technique. |
---|---|
ISSN: | 0305-1048 1362-4962 1362-4962 |
DOI: | 10.1093/nar/gkab038 |