Oligodendrocyte precursor cell specification is regulated by bidirectional neural progenitor–endothelial cell crosstalk
Neural-derived signals are crucial regulators of CNS vascularization. However, whether the vasculature responds to these signals by means of elongating and branching or in addition by building a feedback response to modulate neurodevelopmental processes remains unknown. In this study, we identified...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2021-04, Vol.24 (4), p.478-488 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neural-derived signals are crucial regulators of CNS vascularization. However, whether the vasculature responds to these signals by means of elongating and branching or in addition by building a feedback response to modulate neurodevelopmental processes remains unknown. In this study, we identified bidirectional crosstalk between the neural and the vascular compartment of the developing CNS required for oligodendrocyte precursor cell specification. Mechanistically, we show that neural progenitor cells (NPCs) express angiopoietin-1 (Ang1) and that this expression is regulated by Sonic hedgehog. We demonstrate that NPC-derived Ang1 signals to its receptor, Tie2, on endothelial cells to induce the production of transforming growth factor beta 1 (TGFβ1). Endothelial-derived TGFβ1, in turn, acts as an angiocrine molecule and signals back to NPCs to induce their commitment toward oligodendrocyte precursor cells. This work demonstrates a true bidirectional collaboration between NPCs and the vasculature as a critical regulator of oligodendrogenesis.
Paredes et al. identify bidirectional crosstalk between the neural and the vascular compartment in the developing CNS required for oligodendrocyte precursor cell specification and mediated by an angiopoietin1–Tie2–TGFß1 signaling axis. |
---|---|
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/s41593-020-00788-z |