A composite chitosan derivative nanoparticle to stabilize a W 1 /O/W 2 emulsion: Preparation and characterization
For preparing stable water-in-oil-in-water emulsion, the role of nanoparticles in stabilizing the interface is very important. In this study, chitosan hydrochloride-carboxymethyl chitosan (CHC-CMC) nanoparticles were prepared considering electrostatic interactions; then the emulsion was prepared and...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2021-03, Vol.256, p.117533 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For preparing stable water-in-oil-in-water emulsion, the role of nanoparticles in stabilizing the interface is very important. In this study, chitosan hydrochloride-carboxymethyl chitosan (CHC-CMC) nanoparticles were prepared considering electrostatic interactions; then the emulsion was prepared and the stability characteristics in presence of NaCl (0-200 mmol/L) and 30 d storage were studied. CHC-CMC nanoparticles (261 nm) were obtained when the CHC: CMC ratio was 1:2. CHC-CMC formation was verified by FT-IR when a new peak appeared at 1580 cm
; W
contained 2 wt % CHC-CMC and W
contained 1 wt % sodium alginate, the creaming index (81.6 %) was higher for the emulsions than Tween 80 (67.4 %) after 30 d. Confocal laser scanning microscopy confirmed the double microstructures, in contrast to the collapse with Tween 80, because the CHC-CMC nanoparticles were densely adsorbing on the oil-water interface. This indicates that CHC-CMC has a stronger ability to stabilize W
/O/W
emulsion than Tween 80. |
---|---|
ISSN: | 1879-1344 |
DOI: | 10.1016/j.carbpol.2020.117533 |