Neural and Behavioral Evidence for Vibrotactile Beat Perception and Bimodal Enhancement

The ability to synchronize movements to a rhythmic stimulus, referred to as sensorimotor synchronization (SMS), is a behavioral measure of beat perception. Although SMS is generally superior when rhythms are presented in the auditory modality, recent research has demonstrated near-equivalent SMS for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cognitive neuroscience 2021-04, Vol.33 (4), p.635-650
Hauptverfasser: Gilmore, Sean A., Russo, Frank A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to synchronize movements to a rhythmic stimulus, referred to as sensorimotor synchronization (SMS), is a behavioral measure of beat perception. Although SMS is generally superior when rhythms are presented in the auditory modality, recent research has demonstrated near-equivalent SMS for vibrotactile presentations of isochronous rhythms [Ammirante, P., Patel, A. D., & Russo, F. A. Synchronizing to auditory and tactile metronomes: A test of the auditory–motor enhancement hypothesis. , , 1882–1890, 2016]. The current study aimed to replicate and extend this study by incorporating a neural measure of beat perception. Nonmusicians were asked to tap to rhythms or to listen passively while EEG data were collected. Rhythmic complexity (isochronous, nonisochronous) and presentation modality (auditory, vibrotactile, bimodal) were fully crossed. Tapping data were consistent with those observed by Ammirante et al. (2016), revealing near-equivalent SMS for isochronous rhythms across modality conditions and a drop-off in SMS for nonisochronous rhythms, especially in the vibrotactile condition. EEG data revealed a greater degree of neural entrainment for isochronous compared to nonisochronous trials as well as for auditory and bimodal compared to vibrotactile trials. These findings led us to three main conclusions. First, isochronous rhythms lead to higher levels of beat perception than nonisochronous rhythms across modalities. Second, beat perception is generally enhanced for auditory presentations of rhythm but still possible under vibrotactile presentation conditions. Finally, exploratory analysis of neural entrainment at harmonic frequencies suggests that beat perception may be enhanced for bimodal presentations of rhythm.
ISSN:0898-929X
1530-8898
DOI:10.1162/jocn_a_01673