A novel palmitic acid hydroxy stearic acid (5‐PAHSA) plays a neuroprotective role by inhibiting phosphorylation of the m‐TOR‐ULK1 pathway and regulating autophagy
Aims Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5‐PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic‐related neurodegeneratio...
Gespeichert in:
Veröffentlicht in: | CNS neuroscience & therapeutics 2021-04, Vol.27 (4), p.484-496 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims
Type 2 diabetes mellitus (T2DM) can lead to brain dysfunction and a series of neurological complications. Previous research demonstrated that a novel palmitic acid (5‐PAHSA) exerts effect on glucose tolerance and chronic inflammation. Autophagy was important in diabetic‐related neurodegeneration. The aim of the present study was to investigate whether 5‐PAHSA has specific therapeutic effects on neurological dysfunction in diabetics, particularly with regard to autophagy.
Methods
5‐PAHSA was successfully synthesized according to a previously described protocol. We then carried out a series of in vitro and in vivo experiments using PC12 cells under diabetic conditions, and DB/DB mice, respectively. PC12 cells were treated with 5‐PAHSA for 24 h, while mice were administered with 5‐PAHSA for 30 days. At the end of each experiment, we analyzed glucolipid metabolism, autophagy, apoptosis, oxidative stress, cognition, and a range of inflammatory factors.
Results
Although there was no significant improvement in glucose metabolism in mice administered with 5‐PAHSA, ox‐LDL decreased significantly following the administration of 5‐PAHSA in serum of DB/DB mice (p |
---|---|
ISSN: | 1755-5930 1755-5949 |
DOI: | 10.1111/cns.13573 |