Effect of dose and timing of prostaglandin F 2α treatments during a 7-d Ovsynch protocol on progesterone concentration at the end of the protocol and pregnancy outcomes in lactating Holstein cows

The objective of this study was to evaluate the effect of two prostaglandin F (PGF) treatments 24 h apart (500 μg of cloprostenol) and treatment with a double PGF dose on d 7 (1000 μg of cloprostenol) during a 7-d Ovsynch protocol on progesterone (P4) concentration and pregnancy per artificial insem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theriogenology 2021-03, Vol.162, p.49
Hauptverfasser: Tippenhauer, C M, Steinmetz, I, Heuwieser, W, Fricke, P M, Lauber, M R, Cabrera, E M, Borchardt, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to evaluate the effect of two prostaglandin F (PGF) treatments 24 h apart (500 μg of cloprostenol) and treatment with a double PGF dose on d 7 (1000 μg of cloprostenol) during a 7-d Ovsynch protocol on progesterone (P4) concentration and pregnancy per artificial insemination (P/AI) in lactating Holstein cows. We hypothesized that treatment leads to a decreased P4 concentration at the second GnRH treatment (G2) and an increase in P/AI compared to the traditional 7-d Ovsynch protocol. A secondary hypothesis was that the treatment effect is influenced by the presence of a corpus luteum (CL) at the first GnRH treatment (G1). Two experiments were conducted on 8 commercial dairy farms in Germany. Once a week, cows from both experiments were assigned in a consecutive manner to receive: (1) Ovsynch (control: GnRH; 7 d, PGF; 9 d, GnRH), (2) Ovsynch with a double PGF dose (GDPG: GnRH; 7 d, 2xPGF; 9 d, GnRH), or (3) Ovsynch with a second PGF treatment 24 h later (GPPG: GnRH; 7 d, PGF; 8 d, PGF; 32 h, GnRH). All cows received timed AI (TAI) approximately 16 h after G2. Pregnancy diagnosis was performed by transrectal palpation (38 ± 3 d after TAI, experiment 1) or transrectal ultrasonography (35 ± 7 d after TAI, experiment 2). Whereas farms from experiment 1 used a Presynch-Ovsynch protocol (PGF, 14 d later PGF, 12 d later GnRH, 7 d later PGF, 2 d later GnRH, and 16-18 h later TAI) to facilitate first postpartum TAI, no presynchronization protocol was used on farms from experiment 2. In experiment 1, we enrolled 1581 lactating dairy cows (60 experimental units) from 2 dairy farms. At G2, blood samples were collected from a subsample of cows (n = 491; 16 experimental units) to determine P4 concentration at G2. In experiment 2, we enrolled 1979 lactating dairy cows (252 experimental units) from 6 dairy farms. Transrectal ultrasonography was performed to determine the presence or absence of a CL at G1. In experiment 1, treatment affected P/AI (P = 0.01) and P/AI was greater for GDPG (38.2%) and GPPG (38.9%) than for control cows (29.8%). Both, GDPG and GPPG cows had decreased P4 concentration at G2 compared with control cows (P 
ISSN:1879-3231
DOI:10.1016/j.theriogenology.2020.12.020